

7
7 Revised 2018

Foreward

The following Washington State Computer Science K-12 Learning Standards are modified to reflect the

2017 revisions to the Computer Science Teachers Association (CSTA) K–12 Computer Science

Standards.

Substitute House Bill 1813 (2015 Legislative session) tasked the Office of the Superintendent of Public

with the adoption of national computer science standards. To fulfill the legislative request, the CSTA

Computer Science K–12 Interim Standards were adopted in December 2016 with the caveat that

Washington would enact changes once CSTA revisions were completed. The CSTA final standards were

published in August 2017.

The CSTA revisions aligned the standards with the K–12 Computer Science Framework; standards were

reworked to be measurable and provide a clear progression from kindergarten through 12th grade in the

concepts and subconcepts of the framework. Final CSTA standards are no longer copyrighted, but instead

hold a Creative Common License. For more information:

https://www.csteachers.org/page/StandardsProcess.

Based on support from OSPI’s Curriculum Advisory and Review Committee, statewide computer science

stakeholders and leadership, and unanimous public comment, revisions to the the Washington State

Computer Science K–12 Learning Standards have been made. Those new standards are reflected in the

following pages and will support computer science instruction statewide.

OSPI and its organizational partners will continue to provide professional learning opportunities to

support implementation of the standards.

Shannon Thissen

Computer Science Program Supervisor

ard

Computer Science K–12 Learning Standards

Adoption Statement

The 2016 Computer Science K–12 Learning Standards were developed collaboratively with

teachers, administrators, subject matter experts, state and national associations, and stakeholders

in computer science. Teams of Washington teachers, technology integration specialists, and

librarians reviewed national standards to determine needs for Washington students.

Since the first draft was made available in December 2015, the Computer Science K–12

Learning Standards have been reviewed by Washington educators, administrators, and family

members. The standards underwent a Bias and Sensitivity Review and a Public Comment Period,

providing those with a stake in computer science education an opportunity to inform the

development and implementation of the standards and supporting documents.

Pursuant to Substitute House Bill (SHB) 1813 and based on support from educators, OSPI’s

Curriculum Advisory and Review Committee, and statewide computer science stakeholders, I

hereby adopt the Computer Science K–12 Learning Standards.

Adopted on this 8th day of December, 2016.

Randy I. Dorn

State Superintendent

of Public Instruction

Computer Science K–12 Learning Standards
Office of Superintendent of Public Instruction

Shannon Thissen, Program Supervisor

Computer Science

Kathe Taylor, Ph.D., Assistant Superintendent

Learning and Teaching

Randy I. Dorn

State Superintendent of Public Instruction

Ken Kanikeberg

Chief of Staff

Gil Mendoza, Ed.D.

Deputy Superintendent

Revised 2018

License

This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License. Accordingly, individuals and
organizations are free to share and adapt the materials in whole or in part, as
long as they provide proper attribution, do not use for commercial purposes,
and share contributions or derivations under the same license.

Attribution

The CSTA K–12 Computer Science Standards are created and maintained by
members of the Computer Science Teachers Association (CSTA).

The Association for Computing Machinery (ACM) founded CSTA as part of its
commitment to K–12 computer science education. This work is licensed under
a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
License.

Suggested citation: Computer Science Teachers Association (2017). CSTA K–12 Computer Science

Standards, Revised 2017. Retrieved from http://www.csteachers.org/standards.

The K–12 Computer Science Framework, led by the Association for

Computing Machinery, Code.org, Computer Science Teachers Association,

Cyber Innovation Center, and National Math and Science Initiative in

partnership with states and districts, informed the development of this

work.

The CSTA Standards Revision Task Force crafted standards by combining concept statements and

practices from the Framework. The Task Force also used descriptive material from the Framework when

writing examples and clarifying statements to accompany the standards. The glossary referenced in the

navigation header links directly to the Framework's glossary.

For more information about the Framework, please visit k12cs.org.

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.csteachers.org/
http://www.acm.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://k12cs.org/
http://www.acm.org/
http://www.acm.org/
http://code.org/
http://www.csteachers.org/
https://cyberinnovationcenter.org/
https://www.nms.org/
http://k12cs.org/
http://k12cs.org/

Table of Contents

Computer Science Is an Essential Academic Subject .. 1

Washington State Learning Goals, Standards, and Outcomes ... 1

Learning Standards: Equity, Access, Inclusion, and Diversity .. 2

Computer Science K–12 Learning Standards ... 3

Goal of the Standards ... 4

Concepts in the Standards ... 5

Practices in the Standards .. 5

Value of Concepts and Standards .. 5

Computational Thinking .. 6

Implementation of Grade-Level Bands ... 6

Organizations and Key Documents Referenced ... 8

Legend for Identifiers .. 9

Standards ... 10

Level 1A: K-2.. 10

Level 1B: 3-5 .. 11

Level 2: 6-8.. 12

Level 3A: 9-10 .. 13

Level 3B: 11-12 .. 15

Computer Science Glossary .. 17

Final Bill Report: SHB 1813 .. 24

Acknowledgements .. 26

Washington Computer Science Leadership Team ... 27

Washington Computer Science Learning Standards Advisory Committee .. 28

Teacher Standards Review Team ... 28

Bias & Sensitivity Review ... 29

 1

Computer Science Is an Essential Academic Subject

The mission of the Office of Superintendent of Public Instruction (OSPI) is to “provide funding,

resources, tools, data and technical assistance that enable educators to ensure students succeed in our

public schools, are prepared to access post-secondary training and education, and are equipped to

thrive in their careers and lives.” Our vision is that “every student is ready for college, career, and life.”

Effective and relevant computer science education is essential to achieving these aims. While attention

to computer science education has increased in recent years, a lack of awareness about its content and

potential impact is widespread. The new Washington State Computer Science K–12 Learning Standards

are designed to enhance teacher understanding and improve student learning so that students are

better equipped for college, career, and life.

Washington is committed to implementing high-quality computer science instruction to:

 Increase the opportunity for all students to gain knowledge of computer science.

 Introduce the fundamental concepts and applications of computer science to all students,

beginning at the elementary school level.

 Make computer science at the secondary level accessible, worthy of a computer science credit,

and/or equivalent to math and science courses as a required graduation credit (see Level 3B of

computer science standards).

 Offer additional secondary-level computer science instruction that allows interested students to

study facets of computer science in depth and prepare them for entry into a career or college.

Washington State Learning Goals, Standards, and Outcomes

Learning standards are for all of us: students, principals, administrators, decision-makers, community

partners, teachers, and families. They help define what is important for students to know and be able to

do as they progress through school. Standards help ensure that students acquire the skills and

knowledge they need to achieve personal and academic success. Standards also provide an avenue for

promoting consistency in what is taught to students across our state—from district to district, school to

school, and classroom to classroom.

These four learning goals are the foundation of all academic learning standards in Washington:

1. Read with comprehension, write effectively, and communicate successfully in a variety of

ways and settings and with a variety of audiences.

2. Know and apply the core concepts and principles of mathematics; social, physical, and

life sciences; civics and history, including different cultures and participation in

representative government; geography; arts; and health and fitness [now named physical

education].

3. Think analytically, logically, and creatively, and to integrate technology literacy and fluency

as well as different experiences and knowledge to form reasoned judgments and solve

problems.

4. Understand the importance of work and finance and how performance, effort, and

decisions directly affect future career and educational opportunities.

 2

The Washington State K–12 Learning Standards are the required elements of instruction and are

worded broadly enough to allow for local decision-making. Depending on school resources and

community norms, instructional activities may vary. The 2018 Computer Science K–12 Learning

Standards reflect OSPI’s continuous commitment to supporting rigorous, inclusive, age-appropriate,

accurate instruction to ensure that students are prepared to live productive and successful lives in a

global society.

The computer science standards provide guidance to teach, reinforce, and apply the state’s learning

goals. They are aligned vertically to strengthen application of learning and depth of knowledge. If

implemented effectively, these standards and outcomes will help students to understand and apply

knowledge and skills necessary to thrive in a global economy and to be successful learners across other

academic disciplines.

Learning Standards: Equity, Access, Inclusion, and Diversity

Computer science, among other STEM disciplines, can provide the knowledge and skills to empower

individuals to create technologies with broad influence and impact. Women, underrepresented

minorities, and people with disabilities are often missing in computer science classes, majors, and

occupations. Limited access to technology due to geography or poverty can also restrict access and

opportunities. A lack of diversity limits the scope of problems being addressed and the ability of new

tools and technologies to reach multiple audiences.

One way to address this opportunity gap is by increasing access, inclusion, and opportunities for all

students to learn computer science.

All students need to understand a world that is increasingly influenced by technology and to apply

computing as a tool for learning and expression in a variety of disciplines and interests. Computer

science and computational thinking, essential 21st Century Skills that increase a student’s readiness for

careers and college in any field, can be integrated into any discipline. The High School and Beyond Plan,

required of all students to graduate, is the place to identify individual student goals for career, college,

and life. Computer science offers a strong foundation for students to attain their goals.

Equity is embodied in the standards through both concepts and practices. For example, Impacts of

Computing is a core concept aimed at promoting ideas about equity. Fostering an Inclusive and Diverse

Computing Culture is an example of a core practice that promotes equity in K–12 computer science.

Equity in computer science is not just about an equitable K–12 Computer Science Framework to

implement the standards, but also about subsequent initiatives such as curriculum development,

teacher preparation, access to tools and equipment, and integrated instruction.

Computer science courses and modules present a distinct opportunity to educate students about

diversity, equity, and inclusion. As noted above, the standards and supporting framework provide

explicit content about inclusive and diverse computing cultures. Students can engage in thoughtful

interaction about the value of diversity while using computational thinking to develop computer

 3

artifacts to solve real-world problems. Educators and students can challenge implicit bias, stereotypes

about computer science, and narrow perspectives while learning about core concepts like networks and

security, data analysis, and impacts of computing because the cross-cutting themes of equity and

inclusion are embedded in the framework.

Computer Science K–12 Learning Standards

The 2015 Washington State Legislature required the adoption of nationally-recognized computer science

standards. The enactment of this law coincided with the development of a national computer science

framework by K12CS.org. The Computer Science K–12 Learning Standards reflect the recommendations

of the K–12 Computer Science Framework, led by the Association for Computing Machinery, Code.org,

Computer Science Teachers Association, Cyber Innovation Center, and National Math and Science

Initiative in partnership with states and districts. The K–12 Computer Science Framework is endorsed by

leading industry and educational organizations as well as K–12, higher education, and research leaders

in the field of computer science education.

The standards are meant to establish a baseline literacy in computer science for all students and provide

guidance for designing curriculum, assessments, and teacher preparation programs. It consists of five

core concepts and seven core practices, as listed:

Core Concepts

1. Computing Systems

2. Networks and the Internet

3. Data and Analysis

4. Algorithms and Programming

5. Impacts of Computing

Core Practices

1. Fostering an Inclusive and Diverse

Computing Culture

2. Collaborating

3. Recognizing and Defining Computational Problems

4. Developing and Using Abstractions

5. Creating Computational Artifacts

6. Testing and Refining

7. Communicating

 4

The Computer Science K–12 Learning Standards and connected framework represent a vision in which

all students, from a young age, engage in the concepts and practices of computer science to understand

a world that is increasingly influenced by technology and to apply computing as a tool for learning and

expression in a variety of disciplines and interests. From kindergarten through 12th grade, students will

develop new approaches to

problem solving that

harness the power of

computational thinking,

while not only becoming

users, but creators of

computing technology.

Computer science also has

strong connections to other

disciplines, and is becoming

increasingly important in

the workplace. Many

problems in science,

engineering, health care,

business, and other areas can

be solved effectively with computers, but finding a solution requires both computer science expertise

and knowledge of the particular application domain. Thus, computer scientists need to understand and

often become proficient in other subjects.

Goal of the Standards

The Computer Science K–12 Learning Standards are based on the Computer Science Teachers

Association’s K–12 Computer Science Standards, and define a set of standards that are supported by the

K–12 Framework. The framework suggests steps that will be needed to enable their wide

implementation. The standards introduce the

principles and methodologies of computer

science to all students, whether they are

college bound or career bound after high

school. The standards outlined in this

document address the entire K–12 range. They complement existing K–12 computer science and

information technology curricula where they are already established, especially the advanced placement

(AP) computer science curricula (AP, 2010). Additionally, the standards complement existing curricula in

other disciplines.

… the office of the superintendent of public instruction shall
adopt computer science learning standards developed by a

nationally recognized computer science education
organization.

-SHB 1813 (2015)

Figure 1: Relationship between Framework Concepts and Practices.
Graphic from K–12 Computer Science Framework video. YouTube: https://youtu.be/CD0EIGfr950

 5

Concepts in the Standards

The core concepts are categories that represent major content areas in the field of computer science.

Figure 2: Concepts - K–12 Computer Science Framework. (2016).
Retrieved from http://www.k12cs.org (CC BY NC SA 4.0).

Practices in the Standards

Practices are behaviors and ways of thinking that students will use as they learn and implement the

various concepts described in the framework. For example, students will create computational artifacts

to demonstrate and increase their knowledge of algorithms. Unlike the framework’s concepts, the

progressions of the practices are not delineated by grade bands.

Value of Concepts and Standards

The computer science concepts and practices will empower students to:

• Be informed citizens who can critically engage in public discussion on computer science

related topics

• Develop as learners, users, and creators of computer science knowledge and artifacts

• Better understand the role of computing in the world around them

• Learn, perform, and express themselves in other subjects and interests

• Increase career and college readiness

The Computer Science Teachers Association collaborated with K12CS.org to align the development of

Interim Computer Science Teachers Association K–12 Computer Science standards with the revision of

the K–12 Computer Science Framework. This process intentionally paralleled the development of the

Next Generation Science Standards, with a framework informing standards.

 6

Figure 3: Practices- K–12 Computer Science Framework. (2016).
Retrieved from http://www.k12cs.org (CC BY NC SA 4.0).

Computational Thinking

Computational Thinking, the human ability to formulate problems so that their solutions can be

represented as computational steps or algorithms to be carried out by an information-processing agent

(e.g., a computer), is central to the standards’ practices and concepts.

Computational thinking is called out as an overarching practice reflected in a number of the core

computer science practices. With its focus on abstraction, automation, and analysis, computational

thinking is a core element of the broader discipline of computer science and for that reason it is

interwoven through these computer science standards at all levels of K–12 learning.

Implementation of Grade-Level Bands

The grade-level bands associated with each learning standard are intended to provide teachers with the

confidence to provide age-appropriate and accurate information and instruction that progresses in

complexity from grade level to grade level. Competency for one grade level serves as a foundation for

attaining competency of the bands for the next grade level. Teachers can use the grade-level bands as

starting points for instruction and as checkpoints to ensure that the learning standards are taught and

applied to the student’s ability.

Teachers can use grade-level bands to:

• Develop lesson plans
• Establish specific and intentional learning objectives to guide teaching and learning
• Conduct ongoing formative and summative assessments to check student understanding

and efficacy of instruction
• Integrate computational thinking into their curriculum
• Create an equitable environment

 7

All curriculum in Washington is decided locally, within each district. Districts will determine how to

incorporate the Computer Science K–12 Learning Standards into each grade level and integrate them

into relevant high school courses leading to graduation.

An understanding of the fundamentals of computer science and its underlying problem-solving

methodology of computational thinking is a valuable skill in our global economy. Not every student

should become a computer scientist, but all students should have the opportunity to explore and create

with computing. Learning standards are the foundation for what students should know and be able to

do. How this learning occurs is up to districts to develop and teachers to impart every day in every

classroom.

 8

Organizations and Key Documents Referenced

A Framework for K–12 Computer Science Education, https://k12cs.org.

College Board’s Computer Science A: https://apstudent.collegeboard.org/apcourse/ap-computer-

science-a .

College Board’s Computer Science Principles, https://apstudent.collegeboard.org/apcourse/ap-

computer-science-principles.

Computer Science Teachers Association K–12 Computer Science Standards (2017),

https://www.csteachers.org/page/standards.

Employment Projections (Washington Employment Security Department)

https://fortress.wa.gov/esd/employmentdata/reports-publications/industry-

reports/employment-projections.

Guzdial, M. (2015) Learner-centered design of computing education: Research on computing for

everyone. Synthesis Lectures on Human-Centered Informatics, 8(6):1–165.

ISTE Standards, http://www.iste.org/standards.

K–12 Computer Science Framework (Video), https://www.youtube.com/watch?v=CD0EIGfr950.

Krauss, J., & Prottsman, K. (2016). Computational thinking and coding for every student: The teacher’s

getting-started guide. Thousand Oaks, CA: Corwin Press.

https://k12cs.org/
https://apstudent.collegeboard.org/apcourse/ap-computer-science-a
https://apstudent.collegeboard.org/apcourse/ap-computer-science-a
https://www.csteachers.org/page/standards.
https://fortress.wa.gov/esd/employmentdata/reports-publications/industry-reports/employment-projections
https://fortress.wa.gov/esd/employmentdata/reports-publications/industry-reports/employment-projections
http://www.iste.org/standards
https://www.youtube.com/watch?v=CD0EIGfr950

 9

Legend for Identifiers

Unique Numbering System for the Washington Computer Science K–12 Learning Standards
To help organize and track each individual standard, a unique identifier was developed. An example

appears below:

Level
Framework

Concept
Number

Computer Science

K–12 Learning Standard

Grades
6-8

Algorithms and
Programming

17
Systematically test and refine

programs using a range of test cases.

2 AP 17 Identifier: 2-AP-17

Use the following legend to interpret the unique identifier for each Computer Science K–12 Learning

Standard:

The identifier code corresponds to:

Level – Concept – Number

Identifier Code Key

Le
ve

ls

1A Grades K–2

1B Grades 3–5

2 Grades 6–8

3A Grades 9–10

3B Grades 11–12

C
o

n
ce

p
ts

CS Computing Systems

NI Networks and the Internet

DA Data and Analysis

AP Algorithms and Programming

IC Impacts of Computing

Integrated into classroom activities through practices:

P
ra

ct
ic

es

1 Fostering an Inclusive Computing Culture

2 Collaborating

3 Recognizing and Defining Computational Problems

4 Developing and Using Abstractions

5 Creating Computational Artifacts

6 Testing and Refining

7 Communicating about Computing

Figure 4: Standards Identifier Code –
Computer Science Teachers Association K–12 Computer Science Standards (2017)
Retrieved from http://www.csteachers.org

http://www.csteachers.org/

 10

Standards
Level 1A: K-2

Identifier Level 1A: K–2

1A-CS-01
Select and operate appropriate software to perform a variety of tasks, and recognize
that users have different needs and preferences for the technology they use. (P 1.1)

1A-CS-02
Use appropriate terminology in identifying and describing the function of common
physical components of computing systems (hardware). (P 7.2)

1A-CS-03
Describe basic hardware and software problems using accurate terminology.
(P 6.2, P 7.2)

1A-NI-04
Explain what passwords are and why we use them, and use strong passwords to protect
devices and information from unauthorized access. (P 7.3)

1A-DA-05
Store, copy, search, retrieve, modify, and delete information using a computing device
and define the information stored as data. (P 4.2)

1A-DA-06 Collect and present the same data in various visual formats. (P 7.1, P 4.4)

1A-DA-07
Identify and describe patterns in data visualizations, such as charts or graphs, to make
predictions. (P 4.1)

1A-AP-08
Model daily processes by creating and following algorithms (sets of step-by-step
instructions) to complete tasks. (P. 4.4)

1A-AP-09
Model the way programs store and manipulate data by using numbers or other symbols
to represent information. (P 4.4)

1A-AP-10
Develop programs with sequences and simple loops, to express ideas or address a
problem. (P. 5.2)

1A-AP-11
Decompose (break down) the steps needed to solve a problem into a precise sequence
of instructions. (P. 3.2)

1A-AP-12
Develop plans that describe a program's sequence of events, goals, and expected
outcomes. (P. 5.1, P. 7.2)

1A-AP-13
Give attribution when using the ideas and creations of others while developing
programs. (P. 7.3)

1A-AP-14
Debug (identify and fix) errors in an algorithm or program that includes sequences and
simple loops. (P. 6.2)

1A-AP-15
Using correct terminology, describe steps taken and choices made during the iterative
process of program development. (P. 7.2)

1A-IC-16
Compare how people live and work before and after the implementation or adoption of
new computing technology. (P. 7)

1A-IC-17 Work respectfully and responsibly with others online. (P. 2.1)

1A-IC-18 Keep login information private, and log off of devices appropriately. (P. 7.3)

 11

Level 1B: 3-5

Identifier Level 1B: 3–5

1B-CS-01
Describe how internal and external parts of computing devices function to form a system.
(P. 7.2)

1B-CS-02
Model how computer hardware and software work together as a system to accomplish
tasks. (P. 4.4)

1B-CS-03
Determine potential solutions to solve simple hardware and software problems using
common troubleshooting strategies. (P. 6.2)

1B-NI-04
Model how information is broken down into smaller pieces, transmitted as packets
through multiple devices over networks and the Internet, and reassembled at the
destination. (P. 4.4)

1B-NI-05
Discuss real-world cybersecurity problems and how personal information can be
protected. (P. 3.1)

1B-DA-06
Organize and present collected data visually to highlight relationships and support a
claim. (P. 7.1)

1B-DA-07
Use data to highlight or propose cause-and-effect relationships, predict outcomes, or
communicate an idea. (P. 7.1)

1B-AP-08
Compare and refine multiple algorithms for the same task and determine which is the
most appropriate. (P. 6.3, P. 3.3)

1B-AP-09
Create programs that use variables to store and modify data. Variables are used to store
and modify data. (P. 5.2)

1B-AP-10 Create programs that include sequences, events, loops, and conditionals. (P. 5.2)

1B-AP-11
Decompose (break down) problems into smaller, manageable subproblems to facilitate
the program development process. (P. 3.2)

1B-AP-12
Modify, remix, or incorporate portions of an existing program into one's own work, to
develop something new or add more advanced features. (P. 5.3)

1B-AP-13
Use an iterative process to plan the development of a program by including others'
perspectives and considering user preferences. (P. 1.1, P. 5.1)

1B-AP-14
Observe intellectual property rights and give appropriate attribution when creating or
remixing programs. (P. 5.2, P. 7.3)

1B-AP-15
Test and debug (identify and fix errors) a program or algorithm to ensure it runs as
intended. (P. 6.1, P. 6.2)

1B-AP-16
Take on varying roles, with teacher guidance, when collaborating with peers during the
design, implementation, and review stages of program development. (P. 2.2)

1B-AP-17
Describe choices made during program development using code comments,
presentations, and demonstrations. (P. 7.2)

1B-IC-18
Discuss computing technologies that have changed the world, and express how those
technologies influence, and are influenced by, cultural practices. (P. 3.1)

1B-IC-19
Brainstorm ways to improve the accessibility and usability of technology products for the
diverse needs and wants of users. (P. 1.2)

1B-IC-20 Seek diverse perspectives for the purpose of improving computational artifacts. (P. 1.1)

1B-IC-21
Use public domain or creative commons media, and refrain from copying or using
material created by others without permission. (P. 7.3)

 12

Level 2: 6-8

Identifier Level 2: 6–8

2-CS-01
Recommend improvements to the design of computing devices, based on an analysis of
how users interact with the devices. (P. 3.3)

2-CS-02
Design projects that combine hardware and software components to collect and
exchange data. (P. 5.1)

2-CS-03
Systematically identify and fix problems with computing devices and their components.
(P. 6.2)

2-NI-04 Model the role of protocols in transmitting data across networks and the Internet. (P. 4.4)

2-NI-05 Explain how physical and digital security measures protect electronic information. (P. 7.2)

2-NI-06
Apply multiple methods of encryption to model the secure transmission of information.

(P. 4.4)

2-DA-07 Represent data using multiple encoding schemes. (P. 4)

2-DA-08
Collect data using computational tools and transform the data to make it more useful and
reliable. (P. 6.3)

2-DA-09 Refine computational models based on the data they have generated. (P. 5.3, P. 4.4)

2-AP-10
Use flowcharts and/or pseudocode to address complex problems as algorithms. (P. 4.4,
4.1)

2-AP-11
Create clearly named variables that represent different data types and perform
operations on their values. (P. 5.1, P. 5.2)

2-AP-12
Design and iteratively develop programs that combine control structures, including
nested loops and compound conditionals. (P. 5.1, P. 5.2)

2-AP-13
Decompose problems and subproblems into parts to facilitate the design,
implementation, and review of programs. (P. 3.2)

2-AP-14
Create procedures with parameters to organize code and make it easier to reuse. (P. 4.1,
P. 4.3)

2-AP-15
Seek and incorporate feedback from team members and users to refine a solution that
meets user needs. (P. 2.3, P. 1.1)

2-AP-16
Incorporate existing code, media, and libraries into original programs, and give
attribution. (P. 4.2, P. 5.2, P. 7.3)

2-AP-17 Systematically test and refine programs using a range of test cases. (P. 6.1)

2-AP-18
Distribute tasks and maintain a project timeline when collaboratively developing
computational artifacts. (P. 2.2)

2-AP-19 Document programs in order to make them easier to follow, test, and debug. (7.2)

2-IC-20
Compare tradeoffs associated with computing technologies that affect people's everyday
activities and career options. (P. 7.2)

2-IC-21 Discuss issues of bias and accessibility in the design of existing technologies. (1.2)

2-IC-22
Collaborate with many contributors through strategies such as crowdsourcing or surveys
when creating a computational artifact. (P. 2.4, P. 5.2)

2-IC-23
Describe tradeoffs between allowing information to be public and keeping information
private and secure. (P. 7.2)

 13

Level 3A: 9-10

Identifier Level 3A: 9–10

3A-CS-01
Explain how abstractions hide the underlying implementation details of computing
systems embedded in everyday objects. (P. 4.1)

3A-CS-02
Compare levels of abstraction and interactions between application software,
system software, and hardware layers. (P. 4.1)

3A-CS-03
Develop guidelines that convey systematic troubleshooting strategies that others
can use to identify and fix errors. (P. 6.2)

3A-NI-04
Evaluate the scalability and reliability of networks, by describing the relationship
between routers, switches, servers, topology, and addressing. (P. 4.1)

3A-NI-05
Give examples to illustrate how sensitive data can be affected by malware and
other attacks. (P. 7.2)

3A-NI-06
Recommend security measures to address various scenarios based on factors such
as efficiency, feasibility, and ethical impacts. (P. 3.3)

3A-NI-07
Compare various security measures, considering tradeoffs between the usability
and security of a computing system. (6.3)

3A-NI-08
Explain tradeoffs when selecting and implementing cybersecurity
recommendations. (P. 7.2)

3A-DA-09
Translate between different bit representations of real-world phenomena, such as
characters, numbers, and images. (P. 4.1)

3A-DA-10
Evaluate the tradeoffs in how data elements are organized and where data is
stored. (P. 3.3)

3A-DA-11
Create interactive data visualizations using software tools to help others better
understand real-world phenomena. (P. 4.4)

3A-DA-12
Create computational models that represent the relationships among different
elements of data collected from a phenomenon or process. (P. 4.4)

3A-AP-13
Create prototypes that use algorithms to solve computational problems by
leveraging prior student knowledge and personal interests. (P. 5.2)

3A-AP-14
Use lists to simplify solutions, generalizing computational problems instead of
repeatedly using simple variables. (P. 4.1)

3A-AP-15
Justify the selection of specific control structures when tradeoffs involve
implementation, readability, and program performance, and explain the benefits
and drawbacks of choices made. (P. 5.2)

3A-AP-16
Design and iteratively develop computational artifacts for practical intent, personal
expression, or to address a societal issue by using events to initiate instructions. (P.
5.2)

3A-AP-17
Decompose problems into smaller components through systematic analysis, using
constructs such as procedures, modules, and/or objects. (P. 3.2)

3A-AP-18
Create artifacts by using procedures within a program, combinations of data and
procedures, or independent but interrelated programs. (P. 5.2)

3A-AP-19
Systematically design and develop programs for broad audiences by incorporating
feedback from users. (P. 5.1)

3A-AP-20
Evaluate licenses that limit or restrict use of computational artifacts when using
resources such as libraries. (P. 7.3)

3A-AP-21
Evaluate and refine computational artifacts to make them more usable and
accessible. (P. 6.3)

 14

Identifier Level 3A: 9–10

3A-AP-22
Design and develop computational artifacts working in team roles using
collaborative tools. (P. 2.4)

3A-AP-23
Document –esign decisions using text, graphics, presentations, and/or
demonstrations in the development of complex programs. (P. 7.2)

3A-IC-24
Evaluate the ways computing impacts personal, ethical, social, economic, and
cultural practices. (P. 1.2)

3A-IC-25 Test and refine computational artifacts to reduce bias and equity deficits. (P. 1.2)

3A-IC-26 Demonstrate ways a given algorithm applies to problems across disciplines. (P. 3.1)

3A-IC-27
Use tools and methods for collaboration on a project to increase connectivity of
people in different cultures and career fields. (P. 2.4)

3A-IC-28
Explain the beneficial and harmful effects that intellectual property laws can have
on innovation. (P. 7.3)

3A-IC-29
Explain the privacy concerns related to the collection and generation of data
through automated processes that may not be evident to users. (P. 7.2)

3A-IC-30
Evaluate the social and economic implications of privacy in the context of safety,
law, or ethics. (P. 7.3)

 15

Level 3B: 11-12

Identifier Level 3B: 11–12

3B-CS-01 Categorize the roles of operating system software. (P. 7.2)

3B-CS-02
Illustrate ways computing systems implement logic, input, and output through hardware
components. (P. 7.2)

3B-NI-03
Describe the issues that impact network functionality (e.g., bandwidth, load, delay,
topology). (P. 7.2)

3B-NI-04
Compare ways software developers protect devices and information from unauthorized
access. (P. 7.2)

3B-DA-05
Use data analysis tools and techniques to identify patterns in data representing complex
systems. (P. 4.1)

3B-DA-06
Select data collection tools and techniques to generate data sets that support a claim or
communicate information. (P. 7.2)

3B-DA-07
Evaluate the ability of models and simulations to test and support the refinement of
hypotheses. (P. 4.4)

3B-AP-08 Describe how artificial intelligence drives many software and physical systems. (P. 7.2)

3B-AP-09
Implement an artificial intelligence algorithm to play a game against a human opponent
or solve a problem. (P. 5.3)

3B-AP-10 Use and adapt classic algorithms to solve computational problems. (P. 4.2)

3B-AP-11 Evaluate algorithms in terms of their efficiency, correctness, and clarity. (P. 4.2)

3B-AP-12 Compare and contrast fundamental data structures and their uses. (P. 4.2)

3B-AP-13 Illustrate the flow of execution of a recursive algorithm. (P. 3.2)

3B-AP-14
Construct solutions to problems using student-created components, such as
procedures, modules and/or objects. (P. 5.2)

3B-AP-15
Analyze a large-scale computational problem and identify generalizable patterns that
can be applied to a solution. (P. 4.1)

3B-AP-16
Demonstrate code reuse by creating programming solutions using libraries and APIs. (P.
5.3)

3B-AP-17
Plan and develop programs for broad audiences using a software lifecycle process. (P.
5.1)

3B-AP-18 Explain security issues that might lead to compromised computer programs. (P. 7.2)

3B-AP-19 Develop programs for multiple computing platforms. (P. 5.2)

3B-AP-20
Use version control systems, integrated development environments (IDEs), and
collaborative tools and practices (code documentation) in a group software project. (P.
2.4)

 16

Identifier Level 3B: 11–12

3B-AP-21
Develop and use a series of test cases to verify that a program performs according to its
design specifications. (P. 6.1)

3B-AP-22
Modify an existing program to add additional functionality and discuss intended and
unintended implications (e.g., breaking other functionality). (P. 5.3)

3B-AP-23 Evaluate key qualities of a program through a process such as a code review. (P. 6.3)

3B-AP-24
Compare multiple programming languages and discuss how their features make them
suitable for solving different types of problems. (P. 7.2)

3B-IC-25
Evaluate computational artifacts to maximize their beneficial effects and minimize
harmful effects on society. (P. 6.1, P. 1.2)

3B-IC-26
Evaluate the impact of equity, access, and influence on the distribution of computing
resources in a global society. (P. 1.2)

3B-IC-27
Predict how computational innovations that have revolutionized aspects of our culture
might evolve. (P. 7.2)

3B-IC-28
Debate laws and regulations that impact the development and use of software. (P. 3.3,
P. 7.3)

17

Computer Science Glossary

The following glossary includes definitions of terms used in the statements in the Washington Computer

Science K–12 Learning Standards. These terms are intended to increase teacher understanding and

decrease biased language.

abstraction (process): The process of reducing complexity by focusing on the main idea. By hiding details

irrelevant to the question at hand and bringing together related and useful details, abstraction reduces

complexity and allows one to focus on the problem. In elementary classrooms, abstraction is hiding

unnecessary details to make it easier to think about a problem.

(product): A new representation of a thing, a system, or a problem that helpfully reframes a problem by

hiding details irrelevant to the question at hand. [MA-DLCS]

(Code.org K–5) Pulling out specific differences to make one solution work for multiple problems.

algorithm: A step-by-step process to complete a task.

A list of steps to finish a task. A set of instructions that can be performed with or without a computer.

For example, the collection of steps to make a peanut butter and jelly sandwich is an algorithm.

(Code.org K–5)

app: A type of application software designed to run on a mobile device, such as a smartphone or tablet

computer (also known as a mobile application). [Techopedia]

artifact: Anything created by a human. See “computational artifact” for the computer science-specific

definition.

ASCII: (American Standard Code for Information Interchange) is the most common format for text files

in computers and on the Internet. In an ASCII file, each alphabetic, numeric, or special character is

represented with a 7-bit binary number (a string of seven 0s or 1s). 128 possible characters are defined.

automation: To link disparate systems and software in such a way that they become self-acting or self-

regulating.

backup: The process of making copies of data or data files to use in the event the original data or data

files are lost or destroyed. [Techopedia]

binary: A method of encoding data using two symbols (usually 1 and 0). To illustrate binary encoding,

we can use any two symbols. [MA-DLCS]

A way of representing information using only two options. (Code.org K–5)

Block-based programming language: (Code.org K–5) Any programming language that lets users create

programs by manipulating “blocks” or graphical programing elements, rather than writing code using

text. Examples include Code Studio, Scratch, and Swift. (Sometimes called visual coding, drag and drop

programming, or graphical programming blocks)

http://searchcio-midmarket.techtarget.com/definition/format
http://whatis.techtarget.com/definition/text
http://searchexchange.techtarget.com/definition/file
http://searchcio-midmarket.techtarget.com/definition/binary

18

bug: An error in a software program. It may cause a program to unexpectedly quit or behave in an

unintended manner. [TechTerms] The process of removing errors (bugs) is called debugging.

An error in a program that prevents the program from running as expected. (Code.org K–5)

cloud: Remote servers that store data and are accessed from the Internet. [Techopedia]

code: Any set of instructions expressed in a programming language. [MA-DLCS] One or more commands

or algorithm(s) designed to be carried out by a computer. (Code.org K–5) See also: program

command: An instruction for the computer. Many commands put together make up algorithms and

computer programs. (Code.org K–5)

computational artifact: Anything created by a human using a computational thinking process and a

computing device. A computational artifact can be, but is not limited to, a program, image, audio,

video, presentation, or web page file.

computational thinking: Mental processes and strategies that include: decomposition, pattern matching,

abstraction, algorithms (decomposing problems into smaller, more manageable problems, finding

repeating patterns, abstracting specific differences to make one solution work for multiple problems, and

creating step-by-step algorithms). (Code.org K–5)

computer science: Using the power of computers to solve problems. (Code.org K–5)

conditionals: Statements that only run under certain conditions or situations. (Code.org K–5)

data: Information. Often, quantities, characters, or symbols that are the inputs and outputs of

computer programs. (Code.org K–5)

debugging: Finding and fixing errors in programs. (Code.org K–5)

decompose: Break a problem down into smaller pieces. (Code.org K–5)

decryption: The process of taking encoded or encrypted text or other data and converting it back

into text that you or the computer can read and understand.

Digital divide: the gulf between those who have ready access to computers and the Internet, and

those who do not.

encryption: The process of encoding messages or information in such a way that only authorized

parties can read it.

event: An action that causes something to happen. (Code.org K–5)

execution: The process of executing an instruction or instruction set.

for loop: A loop with a predetermined beginning, end, and increment (step interval) (Code.org K–5)

19

function: A type of procedure or routine. Some programming languages make a distinction between a

function, which returns a value, and a procedure, which performs some operation, but does not return

a value. [MA-DLCS] Note: This definition differs from that used in math. A piece of code that you can

easily call over and over again. Functions are sometimes called ‘procedures.’ (Code.org K–5)

GPS: Abbreviation for "Global Positioning System." GPS is a satellite navigation system used to

determine the ground position of an object. [TechTerms]

hacking: Appropriately applying ingenuity (from “The Meaning of Hack”), cleverly solving a programming

problem (the New Hacker’s Dictionary), and using a computer to gain unauthorized access to data within

a system. [MA-DLCS]

hardware: The physical components that make up a computing system, computer, or computing device.

[MA-DLCS]

hierarchy: An organizational structure in which items are ranked according to levels of importance.

[TechTarget]

HTTP: (Hypertext Transfer Protocol) is the set of rules for transferring files (text, graphic images, sound,

video, and other multimedia files) on the World Wide Web.

HTTPS: encrypts and decrypts user page requests as well as the pages that are returned by the Web

server. The use of HTTPS protects against eavesdropping and man-in-the-middle attacks.

input: The signals or instructions sent to a computer. [Techopedia]

Internet: The global collection of computer networks and their connections, all using shared protocols to

communicate [CAS-Prim] A group of computers and servers that are connected to each other. (Code.org

K–5)

iterative: Involving the repeating of a process with the aim of approaching a desired goal, target, or

result. [MA-DLCS]

logic (Boolean): Boolean logic deals with the basic operations of truth values: AND, OR, NOT and

combinations thereof. [FOLDOC]

loop: A programming structure that repeats a sequence of instructions as long as a specific condition is

true. [TechTerms]

looping: Repetition, using a loop. The action of doing something over and over again. (Code.org K–5)

lossless: data compression without loss of information.

lossy: data compression in which unnecessary information is discarded.

memory: Temporary storage used by computing devices. [MA-DLCS]

model: A representation of (some part of) a problem or a system. (Modeling (v): the act of creating a

model) [MA-DLCS] Note: This definition differs from that used in science.

20

network: A group of computing devices (personal computers, phones, servers, switches, routers, and so

on) connected by cables or wireless media for the exchange of information and resources.

nested loop: A loop within a loop, an inner loop within the body of an outer one.

operating system: Software that communicates with the hardware and allows other programs to run.

An operating system (or “OS”) is comprised of system software, or the fundamental files a computer

needs to boot up and function. Every desktop computer, tablet, and smartphone includes an operating

system that provides basic functionality for the device. [TechTerms]

operation: An action, resulting from a single instruction, that changes the state of data. [Dictionary.com]

packets: Small chunks of information that have been carefully formed from larger chunks of

information.

pair programming: A technique in which two developers (or students) team together and work on one

computer. [TechTarget] The terms “driver” and “navigator” are often used for the two roles. In a

classroom setting, teachers often specify that students switch roles frequently (or within a specific

period of time).

paradigm (programming): A theory or a group of ideas about how something should be done, made, or

thought about. A philosophical or theoretical framework of any kind. [Merriam-Webster] Common

programming paradigms are object-oriented, functional, imperative, declarative, procedural, logic, and

symbolic. [DC, Wikipedia]

parallelism: The simultaneous execution on multiple processors of different parts of a program.

parameter: A special kind of variable used in a procedure to refer to one of the pieces of data provided

as input to the procedure. These pieces of data are called arguments. An ordered list of parameters is

usually included in the definition of a subroutine so each time the subroutine is called, its arguments for

that call can be assigned to the corresponding parameters. [MA-DLCS]

An extra piece of information that you pass to the function to customize it for a specific need. (Code.org)

pattern matching: Finding similarities between things. (Code.org K–5)

persistence: Trying again and again, even when something is very hard. (Code.org K–5)

piracy: The illegal copying, distribution, or use of software. [TechTarget]

procedure: An independent code module that fulfills some concrete task and is referenced within a

larger body of source code. This kind of code item can also be called a function or a subroutine. The

fundamental role of a procedure is to offer a single point of reference for some small goal or task that

the developer or programmer can trigger by invoking the procedure itself. A procedure may also be

referred to as a function, subroutine, routine, method or subprogram. [Techopedia]

processor: The hardware within a computer or device that executes a program. The CPU (central

processing unit) is often referred to as the brain of a computer.

http://techterms.com/definition/software
http://techterms.com/definition/software
http://techterms.com/definition/hardware
http://techterms.com/definition/hardware
http://techterms.com/definition/program
http://techterms.com/definition/program
http://techterms.com/definition/systemsoftware
http://techterms.com/definition/systemsoftware
http://techterms.com/definition/boot
http://techterms.com/definition/boot

21

program; programming (n): A set of instructions that the computer executes in order to achieve a

particular objective. [MA-DLCS] program (v): To produce a program by programming. An algorithm

that has been coded into something that can be run by a machine. (Code.org K–5)

programming: The craft of analyzing problems and designing, writing, testing, and maintaining

programs to solve them. [MA-DLCS] The art of creating a program. (Code.org K–5)

protocol: The special set of rules that end points in a telecommunication connection use when they

communicate. Protocols specify interactions between the communicating entities. [TechTarget]

prototype; prototype: An early approximation of a final product or information system, often built

for demonstration purposes. [TechTarget, Techopedia]

pseudocode: A detailed yet readable description of what a computer program or algorithm must do,

expressed in a formally-styled natural language rather than in a programming language. [TechTarget]

RGB: (red, green, and blue) Refers to a system for representing the colors to be used on a computer

display. Red, green, and blue can be combined in various proportions to obtain any color in the visible

spectrum.

routing; router; routing: Establishing the path that data packets traverse from source to destination. A

device or software that determines the routing for a data packet. [TechTarget]

run program: Cause the computer to execute the commands you've written in your program. (Code.org

K–5)

security: The protection against access to, or alteration of, computing resources, through the use of

technology, processes, and training. [TechTarget]

servers: Computers that exist only to provide things to others. (Code.org K–5)

simulate: to imitate the operation of a real world process or system over time.

simulation: Imitation of the operation of a real world process or system over time. [MA-DLCS]

software: Programs that run on a computer system, computer, or other computing device.

SMTP: the standard protocol for sending emails across the Internet. The communication between mail

servers uses port 25.

IMAP: a mail protocol used for accessing email on a remote web server from a local client.

storage: A place (usually a device) into which data can be entered, in which it can be held, and from

which it can be retrieved at a later time. [FOLDOC] A process through which digital data is saved within a

data storage device by means of computing technology. Storage is a mechanism that enables a

computer to retain data, either temporarily or permanently. [Techopedia]

22

string: A sequence of letters, numbers, and/or other symbols. A string might represent a name, address,

or song title. Some functions commonly associated with strings are length, concatenation, and substring.

[TechTarget]

structure: A general term used in the framework to discuss the concept of encapsulation without

specifying a particular paradigm.

subroutine: A callable unit of code, a type of procedure.

switch: A high-speed device that receives incoming data packets and redirects them to their destination

on a local area network (LAN). [Techopedia]

system: A collection of elements or components that work together for a common purpose.

[TechTarget] A collection of computing hardware and software integrated for the purpose of

accomplishing shared tasks.

topology: The physical and logical configuration of a network; the arrangement of a network, including

its nodes and connecting links. A logical topology is how devices appear connected to the user. A

physical topology is how they are actually interconnected with wires and cables. [PC Magazine]

troubleshooting: A systematic approach to problem solving that is often used to find and resolve a

problem, error, or fault within software or a computer system. [Techopedia, TechTarget]

user: A person for whom a hardware or software product is designed (as distinguished from the

developers). [TechTarget]

variable: A symbolic name that is used to keep track of a value that can change while a program is

running. Variables are not just used for numbers. They can also hold text, including whole sentences

(“strings”), or the logical values “true” or “false.” A variable has a data type and is associated with a data

storage location; its value is normally changed during the course of program execution. [CAS-Prim,

Techopedia] A placeholder for a piece of information that can change (Code.org K–5) Note: This

definition differs from that used in math.

wearable computing: Miniature electronic devices that are worn under, with or on top of clothing.

http://www.pcmag.com/encyclopedia/term/46301/logical-vs-physical-topology

23

Key to sources of multiple definitions in this glossary:

CAS-Prim: Computing at School. Computing in the national curriculum: A guide for primary teachers

(http://www.computingatschool.org.uk/data/uploads/CASPrimaryComputing.pdf)

Code.org: Creative Commons License (CC BY-NC-SA 4.0)

(https://code.org/curriculum/docs/k-5/glossary)

Computer Science Teachers Association: CSTA K–12 Computer Science Standards (2011)

https://csta.acm.org/Curriculum/sub/K12Standards.html

FOLDOC: Free On-Line Dictionary of Computing. (http://foldoc.org/)

MA-DLCS: Massachusetts Digital Literacy and Computer Science Standards, Glossary (Draft, December

2015)

NIST/DADS: National Institute of Science and Technology Dictionary of Algorithms and Data Structures.

(https://xlinux.nist.gov/dads//)

Techopedia: Techopedia. (https://www.techopedia.com/dictionary)

TechTarget: TechTarget Network. (http://www.techtarget.com/network)

TechTerms: Tech Terms Computer Dictionary. (http://www.techterms.com)

http://www.computingatschool.org.uk/data/uploads/CASPrimaryComputing.pdf
http://www.computingatschool.org.uk/data/uploads/CASPrimaryComputing.pdf
http://www.computingatschool.org.uk/data/uploads/CASPrimaryComputing.pdf
http://creativecommons.org/
https://code.org/curriculum/docs/k-5/glossary
https://csta.acm.org/Curriculum/sub/K12Standards.html
https://csta.acm.org/Curriculum/sub/K12Standards.html
http://foldoc.org/
http://foldoc.org/
https://xlinux.nist.gov/dads/
https://xlinux.nist.gov/dads/
https://www.techopedia.com/dictionary
https://www.techopedia.com/dictionary
https://www.techopedia.com/dictionary
http://www.techtarget.com/network
http://www.techtarget.com/network
http://www.techtarget.com/network
http://www.techterms.com/
http://www.techterms.com/

24

FINAL BILL REPORT: SHB 1813

C 3 L 15 E1 Synopsis as Enacted

Brief Description: Expanding computer science education.

Sponsors: House Committee on Appropriations (originally sponsored by Representatives Hansen,

Magendanz, Reykdal, Muri, Tarleton, Zeiger, Lytton, Haler, Senn, Harmsworth, Tharinger, Young,

Walkinshaw, Stanford, S. Hunt and Pollet).

House Committee on Education

House Committee on Appropriations

Senate Committee on Early Learning & K–12 Education

Background:

Endorsements.

There are several pathways to endorsement and different types of endorsements. For example,

academic endorsements and Career and Technical Education (CTE) endorsements differ—a CTE

endorsed teacher may only teach CTE courses, and these courses often will not apply toward core

education requirements. There is no academic endorsement for computer science, only a CTE

endorsement, which teachers may obtain by demonstrating to a teacher preparation program that

they have experience in the field and have met the program's requirements.

Conditional Scholarship for Educators.

A conditional scholarship is a loan that is forgiven in whole or in part in exchange for service as a

certificated teacher at a K–12 public school. The state forgives one year of loan obligation for every

two years a recipient teaches in a Washington K–12 public school. When a recipient fails to

continue with the required course of study or teaching obligation, the recipient must repay the

remaining loan principal with interest.

The Retooling Mathematics and Sciences Conditional Scholarship Program requires a K–12 teacher,

or certificated elementary educator who is not employed in a position requiring an elementary

education certificate, to pursue an endorsement in math or science to be eligible for the program.

The conditional scholarship amount is determined by the Student Achievement Council, may not

exceed $3,000 per year, and is applied to the cost of tuition, fees, and educational expenses.

––––––––––––––––––––––

This analysis was prepared by non-partisan legislative staff for the use of legislative members in their

deliberations. This analysis is not a part of the legislation nor does it constitute a statement of

legislative intent.

House Bill Report - 1 - SHB 1813

25

Summary:

Endorsements and Standards.

The OSPI and the Professional Educator Standard Board (PESB) must adopt computer science

learning standards developed by a nationally recognized computer science education organization.

The PESB must also develop standards for a K–12 computer science endorsement, which must

facilitate dual endorsement in computer science and mathematics, science, or another related high-

demand endorsement.

Conditional Scholarship for Educators.

The Retooling to Teach Mathematics and Sciences Conditional Scholarship Program is renamed the

Educator Retooling Conditional Scholarship Program. A K–12 teacher, or certificated elementary

educator who is not employed in a position requiring an elementary education certificate, may

qualify for the conditional scholarship program by pursuing an endorsement in a subject or

geographic endorsement shortage area, as defined by the Professional Educator Standards Board.

Votes on Final Passage:

 House 91 7

First Special Session

 House 88 4

 Senate 43 0

Effective: August 27, 2015

House Bill Report - 2 - SHB 1813

26

Acknowledgements

Sincere appreciation is extended to the members of the Computer Science Leadership team for

their time, expertise and commitment in the vetting of these standards.

Washington Computer Science Leadership Team

Gregory Bianchi, STEM Curriculum Developer, Bellevue School District

Jacob Blickenstaff, Program Director, Washington State LASER/Pacific Science Center

Georgia Boatman, Science Coordinator, Educational Service District 123

Callista Chen, Executive Director, Techbridge Girls

Clarence Dancer, STEM Program Supervisor, OSPI

Mark DeLoura, Games and Education Consultant, Satori

Barbara Dittrich, Advanced Placement Program Supervisor OSPI

Maya Donnelly, STEM Teacher, Pasco School District

Ellen Ebert, Science Director, OSPI

Perry Fizzano, Associate Professor Computer Science, Western Washington University

Dan Gallagher, Science Program Manager, Seattle Public Schools

Nimisha Ghosh Roy, District Manager, Code.org

Phyllis Harvey-Buschell, Curriculum Director, Washington MESA

Andrew Hickman, Digital Learning Coordinator, Educational Service District 113

Vickei Hrdina, Science Coordinator, Educational Service District 112

Derek Jaques, District CTE Director, Camas School District

Gregory Kilpatrick, Assistant CTE Director, South Kitsap School District

Thomas LaGuardia, Student, Kent Meridian High School Student

Mechelle LaLanne, Science Coordinator, Educational Service District 171

Juan Lozano, CTE Educational Specialist, Highline School District

Cheryl Lydon, Science Coordinator, Educational Service District 121

Stuart Reges, Principal Lecturer Computer Science and Engineering, University of

Washington

Jana Sanchez, Elementary Instructional Facilitator, Mathematics, Everett School District

Tammie Schradar, Science Coordinator, Educational Service District 101

Andy Shouse, Chief Program Officer, Washington STEM

Dennis Small, Director Educational Technology, OSPI

Adam Smith, Computer Science Teacher, Cheney High School

Kathleen Stillwell, K - 12 Curriculum Specialist, Mathematics, Computer Science, Everett

School District

Shannon Thissen, Computer Science Program Specialist, OSPI

Gilda Wheeler, Senior Program Officer, Washington STEM

David Wicks, Associate Professor of Curriculum & Instruction, Seattle Pacific University

Ann Wright-Mockler, STEM Educator-in-Residence, Pacific Northwest National Laboratory

Lance Wrzesinski, Business & Marketing Pathway Supervisor, OSPI

Washington Computer Science Learning Standards Advisory Committee

Greg Bianchi, STEM Curriculum Developer, Bellevue School District

Cheri Bortleson, K-5 STEM Curriculum Developer – Bellevue School District

Mark DeLoura, Games and Education Consultant, Satori

Ellen Ebert, Science Director, OSPI

Perry Fizzano, Computer Science Professor, Western Washington University

Anne Gallagher, Mathematics Director, OSPI

Nimisha Ghosh-Roy, District Manager, Code.org

Phyllis Harvey-Buschel, Curriculum Director, Washington MESA

Greg Kilpatrick, Assistant CTE Director, South Kitsap School District

Thomas LaGuardia, Student, Kent Meridian High School Student

Stuart Reges, Principal Lecturer Computer Science and Engineering, University of

Washington

Tammie Schrader, Science Coordinator, Educational Service District101

Adam Smith, Computer Science Teacher, Cheney School District

Kathy Stillwell, STEM Innovation Specialist, Everett School District

Shannon Thissen, Computer Science Program Specialist, OSPI

Lance Wrzesinski, Business & Marketing Pathway Supervisor, OSPI

Teacher Standards Review Team

Ray Birks, Instructional Technology Facilitator, Wenatchee School District

Lori Boyd, Computer Lab Director, Moses Lake School District

Michael Conklin, Math/Computer Science Teacher, Central Valley School District

Lori Curtis, Technology Specialist, White River School District

Anna Davis, 3rd Grade Teacher, Moses Lake School District

Maya Donnelly, STEM Elementary Teacher, Pasco School District

Liz Ebersole, Teacher/Librarian, Private School

Connie Haines, Speech Language Pathologist/Assistive Technology, Sumner School District

Ann Hayes-Bell, Technology Integration Specialist, Shoreline School District

Dane Lewman, Business Teacher, Cascade School District

Marc Long, Computer Science Teacher, Kennewick School District

Juan Lozano, CTE Educational Specialist, Highline School District

Tina Nicpan-Brown, 5th grade Teacher, Wenatchee School District

Patricia Percival, Middle School Math Teacher, Everett School District

Wendy Richmond, Elementary Teacher, Richland School District

Adam Smith, Computer Science Teacher, Cheney School District

Dani Ward, STEM Teacher, Bellevue School District

Bias & Sensitivity Review

Clarence Dancer, STEM Program Supervisor, OSPI

Mary Dismuke, Native American Education Coordinator, Clover Park School District

Gwendolyn Haley, Library Services Manager, Spokane City Libraries

Skylar Jones, Sped Education High Needs, Medical Lake School District

Sherry Krainick, WSPTA Legislative Director

Catherine Lee, Webmaster, Chinese American Citizens Alliance

Mynor Lopez, Executive Assistant, WA Commission on Hispanic Affairs

Ann Renker, Assistant Superintendent, Sequim School District

Laurel White, Speech Language Pathologist, Eastmont School District

OSPI provides equal access to all programs and services without discrimination based on sex, race, creed, religion, color,

national origin, age, honorably discharged veteran or military status, sexual orientation, gender expression, gender

identity, disability, or the use of a trained dog guide or service animal by a person with a disability. Questions and

complaints of alleged discrimination should be directed to the Equity and Civil Rights Director at 360-725-6162;

TTY: 360-664-3631; or P.O. Box 47200, Olympia, WA 98504-7200; or equity@k12.wa.us.

Download this material in PDF at http://www.k12.wa.us/CurriculumInstruct/learningstandards.aspx.

Please refer to this document number for quicker service: 16-0075.

Chris Reykdal • State Superintendent

Office of Superintendent of Public Instruction

Old Capitol Building • P.O. Box 47200

Olympia, WA 98504-7200

mailto:equity@k12.wa.us
http://www.k12.wa.us/CurriculumInstruct/learningstandards.aspx

	Structure Bookmarks
	Computer Science Is an Essential Academic Subject
	Washington State Learning Goals, Standards, and Outcomes
	Learning Standards: Equity, Access, Inclusion, and Diversity
	Computer Science K–12 Learning Standards
	Goal of the Standards
	Concepts in the Standards
	Practices in the Standards
	Value of Concepts and Standards
	Computational Thinking
	Implementation of Grade-Level Bands
	Organizations and Key Documents Referenced
	Legend for Identifiers
	Level 1A: K-2
	Level 1B: 3-5
	Level 2: 6-8
	Level 3A: 9-10
	Level 3B: 11-12
	Computer Science Glossary
	Key to sources of multiple definitions in this glossary:

