Draft Mathematics Standards Crosswalk

Mathematics Crosswalk

Purpose of this crosswalk

This crosswalk is a draft showing alignment between the mathematics standards in the Washington (WA) State K–12 Learning Standards for Mathematics (2011) and the proposed Washington (WA) State K–12 Learning Standards for Mathematics (2024). This crosswalk can be used to understand how the Math CCSS were updated, revised, and reorganized.

The WA State K-12 Learning Standards for Mathematics have not yet been formally adopted. This crosswalk is a draft only.

Crosswalk Key

WA State K-12 Learning Standards for Mathematics (2011)	WA State K-12 Learning Standards for Mathematics (2024)
Text of standard in the Mathematics Common Core (2011)	Text of standard that was changed in the draft WA State Learning Standards for Mathematics (2024)
Addition of Data Science Standards	Text of new Data Science Standard

Note: WA K–12 Learning Standards for Mathematics (2011) which have <u>not</u> been updated or revised do not appear in this crosswalk as they are unchanged in the WA State Learning Standards for Mathematics (2024).

Kindergarten

WA State K–12 Learning Standards for Mathematics (2011)	WA State K–12 Learning Standards for Mathematics (2024)
K.OA.A.2 Solve addition and subtraction word problems, and	K.OA.A.2 Flexibly, efficiently, and accurately solve addition and
add and subtract within 10, e.g., by using objects or drawings to	subtraction word problems, and add and subtract within 10.
represent the problem.	
K.OA.A.5 Fluently add and subtract within 5.	K.OA.A.5 Flexibly, efficiently, and accurately add and subtract
	within 5.
K.G.B.6 Compose simple shapes to form larger shapes. For	K.G.B.6 Use simple shapes to compose a variety of larger
example, "Can you join these two triangles with full sides	shapes.
touching to make a rectangle?"	
Addition of Data Science Standards	K.DS.1 Generate questions to investigate situations within the
	classroom.
Addition of Data Science Standards	K.DS.2 Collect or consider data through organizing objects or
	drawing pictures to represent and communicate observations.
Addition of Data Science Standards	K.DS.3 Analyze data sets by noticing and describing patterns in
	data-rich situations.
Addition of Data Science Standards	K.DS.4 Interpret and communicate results through structured
	answers with teacher guidance.

WA State K-12 Learning Standards for Mathematics (2011)	WA State K-12 Learning Standards for Mathematics (2024)
1.0A.A.1 Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.	1.0A.A.1 Use addition and subtraction within 20 to flexibly, efficiently, and accurately solve word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using objects, drawings, and/or equations with a symbol for the unknown number to represent the problem.
1.OA.A.2 Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.	1.0A.A.2 Flexibly, efficiently, and accurately solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20, e.g., by using objects, drawings, and/or equations with a symbol for the unknown number to represent the problem.
1.0A.B.3 Apply properties of operations as strategies to add and subtract.3 Examples: If $8 + 3 = 11$ is known, then $3 + 8 = 11$ is also known. (Commutative property of addition.) To add $2 + 6 + 4$, the second two numbers can be added to make a ten, so $2 + 6 + 4 = 2 + 10 = 12$. (Associative property of addition.)	1.OA.B.3 Apply and extend properties of operations by selecting and demonstrating strategies to add and subtract.
1.OA.B.4 Understand subtraction as an unknown-addend problem. For example, subtract 10 – 8 by finding the number that makes 10 when added to 8.	1.OA.B.4 Demonstrate understanding of subtraction as an unknown-addend problem.
1.0A.C.5 Relate counting to addition and subtraction (e.g., by counting on 2 to add 2).	1.OA.C.5 Extend and apply counting strategies to addition and subtraction (e.g., by counting on 2 to add 2).

1.0A.C.6 Add and subtract within 20, demonstrating fluency for addition and subtraction within 10. Use strategies such as counting on; making ten (e.g., 8 + 6 = 8 + 2 + 4 = 10 + 4 = 14); decomposing a number leading to a ten (e.g., 13 - 4 = 13 - 3 - 1 = 10 - 1 = 9); using the relationship between addition and subtraction (e.g., knowing that 8 + 4 = 12, one knows 12 - 8 = 4); and creating equivalent but easier or known sums (e.g., adding 6 + 7 by creating the known equivalent 6 + 6 + 1 = 12 + 1 = 13).

WA State K-12 Learning Standards for Mathematics (2024)

- **1.0A.C.6** Flexibly, efficiently, and accurately add and subtract within 20, for addition and subtraction within 10. Use strategies such as counting on; making ten (e.g., 8 + 6 = 8 + 2 + 4 = 10 + 4 = 14, decomposing a number leading to a ten (e.g., 13 4 = 13 3 1 = 10 1 = 9); using the relationship between addition and subtraction (e.g., knowing that 8 + 4 = 12, one knows 12 8 = 4); and creating equivalent but easier or known sums (e.g., adding 6 + 7 by creating the known equivalent 6 + 6 + 1 = 12 + 1 = 13).
- **1.OA.D.7** Determine the unknown whole number in an addition or subtraction equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations 8 + ? = 11, 5 = -3, 6 + 6 = ...
- **1.OA.D.7** Demonstrate understanding of the meaning of the equal sign, and determine if equations involving addition and subtraction are true or false
- **1.NBT.B.2** Understand that the two digits of a two-digit number represent amounts of tens and ones. Understand the following as special cases: **a)** 10 can be thought of as a bundle of ten ones called a "ten," **b)** The numbers from 11 to 19 are composed of a ten and one, two, three, four, five, six, seven, eight, or nine ones. **c)** The numbers 10, 20, 30, 40, 50, 60, 70, 80, 90 refer to one, two, three, four, five, six, seven, eight, or nine tens (and 0 ones).
- **1.NBT.B.2** Understand that the two digits of a two-digit number represent amounts of tens and ones.

WA State K-12 Learning Standards for Mathematics (2011)	WA State K-12 Learning Standards for Mathematics (2024)
1.NBT.C.4 Add within 100, including adding a two-digit number	1.NBT.C.4 Flexibly, efficiently, and accurately add within 100,
and a one-digit number, and adding a two-digit number and a	including adding a two-digit number and a one-digit number,
multiple of 10, using concrete models or drawings and	and adding a two-digit number and a multiple of 10, using
strategies based on place value, properties of operations, and/or	concrete models or drawings and strategies based on place
the relationship between addition and subtraction; relate the	value, properties of operations, and/or the relationship between
strategy to a written method and explain the reasoning used.	addition and subtraction; relate the strategy to a written method
Understand that in adding two-digit numbers, one adds tens	and explain the reasoning used. Understand that in adding two-
and tens, ones and ones; and sometimes it is necessary to	digit numbers, one adds tens and tens, ones and ones; and
compose a ten.	sometimes it is necessary to compose a ten.
1.G.A.2 Compose two-dimensional shapes (rectangles, squares,	1.G.A.2 Compose two-dimensional shapes (rectangles, squares,
trapezoids, triangles, half circles, and quarter-circles) or three-	trapezoids, triangles, half circles, and quarter-circles) or three-
dimensional shapes (cubes, right rectangular prisms, right	dimensional shapes (cubes, right rectangular prisms, right
circular cones, and right circular cylinders) to create a composite	circular cones, and right circular cylinders) to create a composite
shape, and compose new shapes from the composite shape.	shape and create new shapes from the composite shape.
Addition of Data Science Standards	1.DS.1 Generate questions to investigate situations within the
	classroom.
Addition of Data Science Standards	1.DS.2 Collect and use data to consider and decide what data
	will answer the investigative question. Organize data with
	drawings, tally marks, or other visual representations.
Addition of Data Science Standards	1.DS.3 Analyze data sets with up to three categories by making
	comparisons and/or looking for patterns.
Addition of Data Science Standards	1.DS.4 Interpret and communicate results through structured
	answers with teacher guidance.

 WA State K-12 Learning Standards for Mathematics (2021) 2.O.A.A.1 Use addition and subtraction within 100 to solve one-and two-step word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem 2.O.A.B.2 Fluently add and subtract within 20 using mental strategies. By end of Grade 2, know from memory all sums of two one-digit numbers. NBT.A.1 Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones; e.g., 706 equals 7 hundreds, 0 tens, and 6 ones. Understand the following as special cases: a) 100 can be thought of as a bundle of ten tens — called a "hundred," b) The numbers 100, 200, 300, 400, 500, 600, 700, 800, 900 refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones). 2.NBT.B.5 Fluently add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction. WA State K-12 Learning Standards for Mathematics (2024) 2.OA.B.1 Use addition and subtraction within 100 to flexibly, efficiently, and accurately and the positions, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem. 2.OA.B.2 Flexibly, efficiently, and accurately add and subtract within 20 using mental strategies. NBT.A.1 Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones; e.g., 706 equals 7 hundreds, 0 tens, and 6 ones. 2.NBT.B.5 Flexibly, efficiently, and accurately add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction. 		
and two-step word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem 2.OA.B.2 Fluently add and subtract within 20 using mental strategies. By end of Grade 2, know from memory all sums of two one-digit numbers. NBT.A.1 Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones; e.g., 706 equals 7 hundreds, 0 tens, and 6 ones. Understand the following as special cases: a) 100 can be thought of as a bundle of ten tens — called a "hundred," b) The numbers 100, 200, 300, 400, 500, 600, 700, 800, 900 refer to one, two, three, four, six, seven, eight, or nine hundreds (and 0 tens and 0 ones). 2.NBT.B.5 Fluently add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction. efficiently, and accurately solve one- and two-step word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem. 2.OA.B.2 Flexibly, efficiently, and accurately add and subtract within 20 using mental strategies. NBT.A.1 Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones; e.g., 706 equals 7 hundreds, 0 tens, and 6 ones. NBT.B.5 Flexibly, efficiently, and accurately add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and	WA State K-12 Learning Standards for Mathematics (2011)	WA State K-12 Learning Standards for Mathematics (2024)
taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem 2.OA.B.2 Fluently add and subtract within 20 using mental strategies. By end of Grade 2, know from memory all sums of two one-digit numbers. NBT.A.1 Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones; e.g., 706 equals 7 hundreds, 0 tens, and 6 ones. Understand the following as special cases: a) 100 can be thought of as a bundle of ten tens — called a "hundred," b) The numbers 100, 200, 300, 400, 500, 600, 700, 800, 900 refer to one, two, three, four, six, seven, eight, or nine hundreds (and 0 tens and 0 ones). 2.NBT.B.5 Fluently add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction.	2.0A.A.1 Use addition and subtraction within 100 to solve one-	2.0A.A.1 Use addition and subtraction within 100 to flexibly,
unknowns in all positions, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem 2.OA.B.2 Fluently add and subtract within 20 using mental strategies. By end of Grade 2, know from memory all sums of two one-digit numbers. NBT.A.1 Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones; e.g., 706 equals 7 hundreds, 0 tens, and 6 ones. Understand the following as special cases: a) 100 can be thought of as a bundle of ten tens — called a "hundred," b) The numbers 100, 200, 300, 400, 500, 600, 700, 800, 900 refer to one, two, three, four, six, seven, eight, or nine hundreds (and 0 tens and 0 ones). 2.NBT.B.5 Fluently add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction.	and two-step word problems involving situations of adding to,	efficiently, and accurately solve one- and two-step word
with a symbol for the unknown number to represent the problem 2.OA.B.2 Fluently add and subtract within 20 using mental strategies. By end of Grade 2, know from memory all sums of two one-digit numbers. NBT.A.1 Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones; e.g., 706 equals 7 hundreds, 0 tens, and 6 ones. Understand the following as special cases: a) 100 can be thought of as a bundle of ten tens — called a "hundred," b) The numbers 100, 200, 300, 400, 500, 600, 700, 800, 900 refer to one, two, three, four, six, seven, eight, or nine hundreds (and 0 tens and 0 ones). 2.NBT.B.5 Fluently add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction.	taking from, putting together, taking apart, and comparing, with	problems involving situations of adding to, taking from, putting
2.OA.B.2 Fluently add and subtract within 20 using mental strategies. By end of Grade 2, know from memory all sums of two one-digit numbers. NBT.A.1 Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones; e.g., 706 equals 7 hundreds, 0 tens, and 6 ones. Understand the following as special cases: a) 100 can be thought of as a bundle of ten tens — called a "hundred," b) The numbers 100, 200, 300, 400, 500, 600, 700, 800, 900 refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones). 2.NBT.B.5 Fluently add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction.	unknowns in all positions, e.g., by using drawings and equations	together, taking apart, and comparing, with unknowns in all
 2.OA.B.2 Fluently add and subtract within 20 using mental strategies. By end of Grade 2, know from memory all sums of two one-digit numbers. NBT.A.1 Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones; e.g., 706 equals 7 hundreds, 0 tens, and 6 ones. Understand the following as special cases: a) 100 can be thought of as a bundle of ten tens — called a "hundred," b) The numbers 100, 200, 300, 400, 500, 600, 700, 800, 900 refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones). 2.NBT.B.5 Fluently add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and 2.OA.B.2 Flexibly, efficiently, and accurately add and subtract within 20 using mental strategies. NBT.A.1 Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones; e.g., 706 equals 7 hundreds, 0 tens, and 6 ones. 706 equals 7 hundreds, 0 tens, and 6 ones. 2.NBT.B.5 Flexibly, efficiently, and accurately add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and 	with a symbol for the unknown number to represent the	positions, e.g., by using drawings and equations with a symbol
strategies. By end of Grade 2, know from memory all sums of two one-digit numbers. NBT.A.1 Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones; e.g., 706 equals 7 hundreds, 0 tens, and 6 ones. Understand the following as special cases: a) 100 can be thought of as a bundle of ten tens — called a "hundred," b) The numbers 100, 200, 300, 400, 500, 600, 700, 800, 900 refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones). 2.NBT.B.5 Fluently add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction. within 20 using mental strategies. NBT.A.1 Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones; e.g., 706 equals 7 hundreds, 0 tens, and 6 ones. 2.NBT.B.5 Flexibly, efficiently, and accurately add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and	problem	for the unknown number to represent the problem.
NBT.A.1 Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones; e.g., 706 equals 7 hundreds, 0 tens, and 6 ones. Understand the following as special cases: a) 100 can be thought of as a bundle of ten tens — called a "hundred," b) The numbers 100, 200, 300, 400, 500, 600, 700, 800, 900 refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones). 2.NBT.B.5 Fluently add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction.	2.OA.B.2 Fluently add and subtract within 20 using mental	2.OA.B.2 Flexibly, efficiently, and accurately add and subtract
NBT.A.1 Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones; e.g., 706 equals 7 hundreds, 0 tens, and 6 ones. Understand the following as special cases: a) 100 can be thought of as a bundle of ten tens — called a "hundred," b) The numbers 100, 200, 300, 400, 500, 600, 700, 800, 900 refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones). 2.NBT.B.5 Fluently add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction. NBT.A.1 Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones; e.g., 706 equals 7 hundreds, 0 tens, and 6 ones. 2.NBT.B.5 Flexibly, efficiently, and accurately add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and	strategies. By end of Grade 2, know from memory all sums of	within 20 using mental strategies.
number represent amounts of hundreds, tens, and ones; e.g., 706 equals 7 hundreds, 0 tens, and 6 ones. Understand the following as special cases: a) 100 can be thought of as a bundle of ten tens — called a "hundred," b) The numbers 100, 200, 300, 400, 500, 600, 700, 800, 900 refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones). 2.NBT.B.5 Fluently add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction. number represent amounts of hundreds, tens, and ones; e.g., 706 equals 7 hundreds, 0 tens, and 6 ones. 2.NBT.B.5 Flexibly, efficiently, and accurately add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and	two one-digit numbers.	
706 equals 7 hundreds, 0 tens, and 6 ones. Understand the following as special cases: a) 100 can be thought of as a bundle of ten tens — called a "hundred," b) The numbers 100, 200, 300, 400, 500, 600, 700, 800, 900 refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones). 2.NBT.B.5 Fluently add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction. 706 equals 7 hundreds, 0 tens, and 6 ones. 706 equals 7 hundreds, 0 tens, and 6 ones.	NBT.A.1 Understand that the three digits of a three-digit	NBT.A.1 Understand that the three digits of a three-digit
following as special cases: a) 100 can be thought of as a bundle of ten tens — called a "hundred," b) The numbers 100, 200, 300, 400, 500, 600, 700, 800, 900 refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones). 2.NBT.B.5 Fluently add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction. 2.NBT.B.5 Flexibly, efficiently, and accurately add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and	number represent amounts of hundreds, tens, and ones; e.g.,	number represent amounts of hundreds, tens, and ones; e.g.,
of ten tens — called a "hundred," b) The numbers 100, 200, 300, 400, 500, 600, 700, 800, 900 refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones). 2.NBT.B.5 Fluently add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction. 2.NBT.B.5 Flexibly, efficiently, and accurately add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and	706 equals 7 hundreds, 0 tens, and 6 ones. Understand the	706 equals 7 hundreds, 0 tens, and 6 ones.
400, 500, 600, 700, 800, 900 refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones). 2.NBT.B.5 Fluently add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction. 2.NBT.B.5 Flexibly, efficiently, and accurately add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and	following as special cases: a) 100 can be thought of as a bundle	
six, seven, eight, or nine hundreds (and 0 tens and 0 ones). 2.NBT.B.5 Fluently add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction. 2.NBT.B.5 Flexibly, efficiently, and accurately add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and	of ten tens — called a "hundred," b) The numbers 100, 200, 300,	
2.NBT.B.5 Fluently add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction. 2.NBT.B.5 Flexibly, efficiently, and accurately add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and	400, 500, 600, 700, 800, 900 refer to one, two, three, four, five,	
based on place value, properties of operations, and/or the relationship between addition and subtraction. within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and	six, seven, eight, or nine hundreds (and 0 tens and 0 ones).	
relationship between addition and subtraction. operations, and/or the relationship between addition and	2.NBT.B.5 Fluently add and subtract within 100 using strategies	2.NBT.B.5 Flexibly, efficiently, and accurately add and subtract
	based on place value, properties of operations, and/or the	within 100 using strategies based on place value, properties of
subtraction.	relationship between addition and subtraction.	operations, and/or the relationship between addition and
		subtraction.

WA State K-12 Learning Standards for Mathematics (2011)	WA State K-12 Learning Standards for Mathematics (2024)
2.NBT.B.7 Add and subtract within 1000, using concrete models	2.NBT.B.7 Flexibly, efficiently, and accurately add and subtract
or drawings and strategies based on place value, properties of	within 1000, using concrete models or drawings and strategies
operations, and/or the relationship between addition and	based on place value, properties of operations, and/or the
subtraction; relate the strategy to a written method. Understand	relationship between addition and subtraction; relate the
that in adding or subtracting three-digit numbers, one adds or	strategy to a written method. Demonstrate understanding that
subtracts hundreds and hundreds, tens and tens, ones and ones;	in adding or subtracting three-digit numbers, one adds or
and sometimes it is necessary to compose or decompose tens	subtracts hundreds and hundreds, tens and tens, ones and ones;
or hundreds.	and sometimes it is necessary to compose or decompose tens
	or hundreds.
2.MD.B.5 Use addition and subtraction within 100 to solve word	2.MD.B.5 Flexibly, efficiently, and accurately use addition and
problems involving lengths that are given in the same units, e.g.,	subtraction within 100 to solve word problems involving lengths
by using drawings (such as drawings of rulers) and equations	that are given in the same units, e.g., by using drawings (such as
with a symbol for the unknown number to represent the	drawings of rulers) and equations with a symbol for the
problem.	unknown number to represent the problem.
2.MD.C.8 Solve word problems involving dollar bills, quarters,	2.MD.C.8 Flexibly, efficiently, and accurately solve word
dimes, nickels, and pennies, using \$ and ¢ symbols	problems involving dollar bills, quarters, dimes, nickels, and
appropriately. Example: If you have 2 dimes and 3 pennies, how	pennies, using \$ and ¢ symbols appropriately.
many cents do you have?	
2.G.A.1 Recognize and draw shapes having specified attributes,	2.G.A.1 Identify and draw shapes based on specified attributes,
such as a given number of angles or a given number of equal	such as a given number of angles or a given number of equal
faces.5 Identify triangles, quadrilaterals, pentagons, hexagons,	faces. Identify triangles, quadrilaterals, pentagons, hexagons,
and cubes.	and cubes.
2.G.A.3 Partition circles and rectangles into two, three, or four	2.G.A.3 Partition circles and rectangles into two, three, or four
equal shares, describe the shares using the words halves, thirds,	equal shares, describe the shares using the words halves, thirds,
half of, a third of, etc., and describe the whole as two halves,	half of, a third of, etc., and describe the whole as two halves,
three thirds, four fourths. Recognize that equal shares of	three thirds, four fourths. Demonstrate that equal shares of
identical wholes need not have the same shape.	identical wholes need not have the same shape.

WA State K-12 Learning Standards for Mathematics (2011)	WA State K-12 Learning Standards for Mathematics (2024)
Addition of Data Science Standards	2.DS.1 Generate questions to investigate situations of interest
	to students within the classroom, school, or community.
Addition of Data Science Standards	2.DS.2 Collect and use data to consider and decide what data
	will answer the investigative question. Organize data with
	pictographs, line plots and bar graphs with single-unit scales.
	Recognize that data can vary for a variety of reasons.
Addition of Data Science Standards	2.DS.3 Analyze data sets with up to four categories by making
	comparisons, looking for patterns and/or making predictions.
Addition of Data Science Standards	2.DS.4 Interpret and communicate results through structured
	answers with teacher guidance. Make a statement(s) about the
	data collected to support the answer to the investigative
	question.

WA State K–12 Learning Standards for Mathematics (2011)	WA State K-12 Learning Standards for Mathematics (2024)
3.OA.A.3 Use multiplication and division within 100 to solve	3.OA.A.3 Use multiplication and division within 100 to flexibly,
word problems in situations involving equal groups, arrays, and	efficiently, and accurately solve word problems in situations
measurement quantities, e.g., by using drawings and equations	involving equal groups, arrays, and measurement quantities,
with a symbol for the unknown number to represent the	e.g., by using drawings and equations with a symbol for the
problem.	unknown number to represent the problem.
3.OA.B Understand properties of multiplication and the	3.OA.B Explore and use the properties of multiplication to
relationship between multiplication and division.	understand the relationship between multiplication and division.
3.OA.B.5 Apply properties of operations as strategies to	3.OA.B.5 Use strategies to multiply and divide by applying and
multiply and divide.2 Examples:	extending understanding of the properties of operations.
If $6 \times 4 = 24$ is known, then $4 \times 6 = 24$ is also known.	
(Commutative property of multiplication.) $3 \times 5 \times 2$ can be	
found by $3 \times 5 = 15$, then $15 \times 2 = 30$, or by $5 \times 2 = 10$, then 3	
\times 10 = 30. (Associative property of multiplication.) Knowing that	
$8 \times 5 = 40$ and $8 \times 2 = 16$, one can find 8×7 as $8 \times (5 + 2) = (8$	
\times 5) + (8 \times 2) = 40 + 16 = 56. (Distributive property.)	
3.OA.B.6 Understand division as an unknown-factor problem.	3.OA.B.6 Demonstrate understanding of division as an
For example, find $32 \div 8$ by finding the number that makes 32	unknown-factor problem.
when multiplied by 8.	
3.OA.C.7 Fluently multiply and divide within 100, using	3.OA.C.7 Flexibly, efficiently, and accurately multiply and divide
strategies such as the relationship between multiplication and	within 100, using strategies such as the relationship between
division (e.g., knowing that $8 \times 5 = 40$, one knows $40 \div 5 = 8$) or	multiplication and division (e.g., knowing that $8 \times 5 = 40$, one
properties of operations. By the end of Grade 3, know from	knows $40 \div 5 = 8$) or properties of operations.
memory all products of two one-digit numbers.	

WA State K–12 Learning Standards for Mathematics (2011)	WA State K-12 Learning Standards for Mathematics (2024)
3.OA.D.8 Solve two-step word problems using the four operations. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.	3.OA.D.8 Flexibly, efficiently, and accurately solve two-step word problems using the four operations. Represent these problems using visual models and equations with a letter standing for the unknown quantity. Assess the reasonableness of answers (e.g., Is my estimate too low or too high? What degree of precision do I need for this situation?) using mental and estimation strategies.
3.OA.D.9 Identify arithmetic patterns (including patterns in the addition table or multiplication table) and explain them using properties of operations. For example, observe that 4 times a number is always even, and explain why 4 times a number can be decomposed into two equal addends.	3.OA.D.9 Identify arithmetic patterns (including patterns in the addition table or multiplication table and explain them using properties of operations.
3.NBT.A.1 Use place value understanding to round whole numbers to the nearest 10 or 100.	3.NBT.A.1 Use place value understanding of multi-digit whole numbers to generate estimates to the nearest 10 or 100 using a variety of estimation strategies.
3.NBT.A.2 Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.	3.NBT.A.2 Flexibly, accurately, and efficiently add and subtract within 1000 using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction.
3.NF.A.1 Understand a fraction 1/b as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction a/b as the quantity formed by a parts of size 1/b.	3.NF.A.1 Understand a unit fraction as the quantity formed when a whole is partitioned into equal parts and explain that a unit fraction is one of those parts (e.g., $\frac{1}{4}$); understand fractions are composed of unit fractions.

WA State K-12 Learning Standards for Mathematics (2011)	WA State K-12 Learning Standards for Mathematics (2024)
3.NF.A.2 Understand a fraction as a number on the number line;	3.NF.A.2 Understand a fraction as a number and can be
represent fractions on a number line diagram. a) Represent a	represented on the number line; represent fractions on a
fraction 1/b on a number line diagram by defining the interval	number line diagram.
from 0 to 1 as the whole and partitioning it into b equal parts.	
Recognize that each part has size 1/b and that the endpoint of	
the part based at 0 locates the number 1/b on the number line,	
b) Represent a fraction a/b on a number line diagram by	
marking off a lengths 1/b from 0. Recognize that the resulting	
interval has size a/b and that its endpoint locates the number	
a/b on the number line.	
3.NF.A.3 Explain equivalence of fractions in special cases and	3.NF.A.3 Explain equivalence of fractions and compare fractions
compare fractions by reasoning about their size. a) Understand	by reasoning about their size.
two fractions as equivalent (equal) if they are the same size, or	
the same point on a number line, b) Recognize and generate	
simple equivalent fractions, e.g., $1/2 = 2/4$, $4/6 = 2/3$). Explain	
why the fractions are equivalent, e.g., by using a visual fraction	
model, c) Express whole numbers as fractions, and recognize	
fractions that are equivalent to whole numbers. Examples:	
Express 3 in the form $3 = 3/1$; recognize that $6/1 = 6$; locate $4/4$	
and 1 at the same point of a number line diagram, d) Compare	
two fractions with the same numerator or the same	
denominator by reasoning about their size. Recognize that	
comparisons are valid only when the two fractions refer to the	
same whole. Record the results of comparisons with the symbols	

>, =, or < and justify the conclusions, e.g., by using a visual

fraction model.

WA State K–12 Learning Standards for Mathematics (2011)	WA State K–12 Learning Standards for Mathematics (2024)
3.MD.A.1 Tell and write time to the nearest minute and	3.MD.A.1 Tell and write time to the nearest minute and
measure time intervals in minutes. Solve word problems	measure time intervals in minutes. Flexibly, efficiently, and
involving addition and subtraction of time intervals in minutes,	accurately solve word problems involving addition and
e.g., by representing the problem on a number line diagram.	subtraction of time intervals in minutes, e.g., by representing the
	problem on a number line diagram.
3.MD.A.2 Measure and estimate liquid volumes and masses of	3.MD.A.2 Measure and estimate liquid volumes and masses of
objects using standard units of grams (g), kilograms (kg), and	objects using standard units of grams (g) , kilograms (kg) , and
liters (l). Add, subtract, multiply, or divide to solve one-step	liters (l). Add, subtract, multiply, or divide to flexibly, efficiently,
word problems involving masses or volumes that are given in	and accurately solve one-step word problems involving masses
the same units, e.g., by using drawings (such as a beaker with a	or volumes that are given in the same units, e.g., by using
measurement scale) to represent the problem.	drawings (such as a beaker with a measurement scale) to
	represent the problem.
3.MD.C.5 Recognize area as an attribute of plane figures and	3.MD.C.5 Recognize area as an attribute of plane figures and
understand concepts of area measurement; a) A square with	understand concepts of area measurement.
side length 1 unit, called "a unit square," is said to have "one	
square unit" of area, and can be used to measure area; b) A	
plane figure which can be covered without gaps or overlaps by	
n unit squares is said to have an area of n square units.	

WA State K-12 Learning Standa	ards for Mat	hematics (2011)
-------------------------------	--------------	-----------------

3.MD.C.7 Relate area to the operations of multiplication and addition; **a)** Find the area of a rectangle with whole-number side lengths by tiling it, and show that the area is the same as would be found by multiplying the side lengths, **b)** Multiply side lengths to find areas of rectangles with whole-number side lengths in the context of solving real world and mathematical problems, and represent whole-number products as rectangular areas in mathematical reasoning, **c)** Use tiling to show in a

concrete case that the area of a rectangle with whole number side lengths a and b + c is the sum of a \times b and a \times c. Use area models to represent the distributive property in mathematical

rectilinear figures by decomposing them into non-overlapping rectangles and adding the areas of the nonoverlapping parts,

reasoning, d) Recognize area as additive. Find areas of

applying this technique to solve real world problems.

- WA State K-12 Learning Standards for Mathematics (2024)
- **3.MD.C.7** Relate area to the operations of multiplication and addition.

- **3.MD.D.8** Solve real world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters.
- **3.G.A.1** Understand that shapes in different categories (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals). Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories.
- **3.MD.D.8** Flexibly, efficiently, and accurately solve real world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters.
- **3.G.A.1** Demonstrate understanding that shapes in different categories (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals). Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories.

WA State K–12 Learning Standards for Mathematics (2011)	WA State K–12 Learning Standards for Mathematics (2024)
Addition of Data Science Standards	3.DS.1 Generate questions to investigate situations of interest
	to students that can be answered with a variety of data or data
	sets.
Addition of Data Science Standards	3.DS.2 Collect and consider data in a variety of ways including
	surveys, groupings, measurement, etc., and ask in what ways can
	the data be collected to capture as much information as
	necessary to inform the investigative question.
Addition of Data Science Standards	3.DS.3 Represent data in a variety of ways including technology.
	Critically analyze data visualizations, including bar graphs, line
	plots, and scaled picture graphs with various scales. Analyze
	data sets with several categories by making comparisons,
	looking for patterns and/or making predictions and recognize
	the source and amount of data collected may impact the
	accuracy.
Addition of Data Science Standards	3.DS.4 Interpret and communicate results, describing difference
	between groups, with teacher guidance. Make a statement(s)
	about the data collected to support the answer to the
	investigative question.

WA State K-12 Learning Standards for Mathematics (2024)
4.0A.A.1 Interpret a multiplication equation as a comparison,
e.g., interpret $35 = 5 \times 7$ as a statement that 35 is 5 times as
many as 7 and 7 times as many as 5. Represent verbal
comparison statements as multiplication equations.
4.0A.A.2 Multiply or divide to flexibly, efficiently, and accurately
solve word problems involving multiplicative comparison, e.g.,
by using drawings and equations with a symbol for the
unknown number to represent the problem, distinguishing
multiplicative comparison from additive comparison.
4.OA.A.3 Flexibly, efficiently, and accurately solve multistep
word problems posed with whole numbers and having whole
number answers using the four operations, including problems
in which remainders must be interpreted. Represent these
problems using visual models and equations with a letter
standing for the unknown quantity. Assess the reasonableness
of answers using mental and estimation strategies.
4.NBT.A.1 Understand that in a multi-digit whole number, a
digit in one place represents ten times what it represents in the
place to its right.
4.NBT.A.3 Use place value understanding of multi-digit whole
numbers to generate estimates to any place less than or equal
to 1,000,000 using a variety of estimation strategies.

WA CO (W 42 L	WA CO (K 42 L
WA State K-12 Learning Standards for Mathematics (2011)	WA State K–12 Learning Standards for Mathematics (2024)
4.NBT.B.4 Fluently add and subtract multi-digit whole numbers	4.NBT.B.4 Flexibly, efficiently, and accurately add and subtract
using the standard algorithm.	multi-digit whole numbers using strategies or algorithms.
4.NBT.B.5 Multiply a whole number of up to four digits by a	4.NBT.B.5 Flexibly, efficiently, and accurately multiply a whole
one-digit whole number, and multiply two two-digit numbers,	number of up to four digits by a one-digit whole number, and
using strategies based on place value and the properties of	multiply two two-digit numbers, using strategies based on place
operations. Illustrate and explain the calculation by using	value and the properties of operations. Illustrate and explain the
equations, rectangular arrays, and/or area models.	calculation by using equations, rectangular arrays, and/or area
	models.
4.NBT.B.6 Find whole-number quotients and remainders with	4.NBT.B.6 Find whole-number quotients and remainders with
up to four-digit dividends and one-digit divisors, using	up to four-digit dividends and one-digit divisors, using multiple
strategies based on place value, the properties of operations,	strategies based on place value, the properties of operations,
and/or the relationship between multiplication and division.	and/or the relationship between multiplication and division.
Illustrate and explain the calculation by using equations,	Illustrate and explain the calculation by using equations,
rectangular arrays, and/or area models.	rectangular arrays, and/or area models.
4.NF.A.1 Explain why a fraction a/b is equivalent to a fraction (n	4.NF.A.1 Explain why a fraction is equivalent to another fraction
\times a)/(n \times b) by using visual fraction models, with attention to	by using visual fraction models (e.g., tape diagrams and number
how the number and size of the parts differ even though the	lines), with attention to how the number and size of the parts
two fractions themselves are the same size. Use this principle to	differ even though the two fractions themselves are the same
recognize and generate equivalent fractions.	size. Understand and use general principles to recognize and
	generate equivalent fractions.
4.NF.A.2 Compare two fractions with different numerators and	4.NF.A.2 Compare two fractions with different numerators and
different denominators, e.g., by creating common denominators	different denominators, e.g., by creating common denominators
or numerators, or by comparing to a benchmark fraction such as	or numerators, or by comparing to a benchmark fraction such
12. Recognize that comparisons are valid only when the two	as. Understand that comparisons are valid only when the two
fractions refer to the same whole. Record the results of	fractions refer to the same whole. Record the results of
comparisons with symbols >, =, or <, and justify the	comparisons with symbols or and justify the conclusions, e.g., by
conclusions, e.g., by using a visual fraction model.	using a visual fraction model.

4.NF.B.3 Understand a fraction a/b with a > 1 as a sum of fractions 1/b; **a)** Understand addition and subtraction of fractions as joining and separating parts referring to the same whole: **b)** Decompose a fraction into a sum of fractions with the same denominator in more than one way, recording each decomposition by an equation. Justify decompositions, e.g., by using a visual fraction model. Examples: 3/8 = 1/8 + 1/8 + 1/8 + 1/8; 3/8 = 1/8 + 2/8; 21/8 = 1 + 1 + 1/8 = 8/8 + 8/8 + 1/8; **c)** Add and subtract mixed numbers with like denominators, e.g., by replacing each mixed number with an equivalent fraction, and/or by using properties of operations and the relationship between addition and subtraction; **d)** Solve word problems involving addition and subtraction of fractions referring to the same whole and having like denominators, e.g., by using visual fraction models and equations to represent the problem.

WA State K-12 Learning Standards for Mathematics (2024)

4.NF.B.3 Flexibly, efficiently, and accurately compose and decompose fractions with a numerator greater than 1 into unit fractions, including fractions greater than one or mixed numbers, to solve situations in context with addition and subtraction of fractions with like denominators.

WA State K-12 Learning Standards for Mathematics (2011)	WA State K-12 Learning Standards for Mathematics (2024)
4.NF.B.4 Apply and extend previous understandings of	4.NF.B.4 Flexibly apply and extend previous understandings of
multiplication to multiply a fraction by a whole number; a)	multiplication to multiply a fraction by a whole number using
Understand a fraction a/b as a multiple of 1/b. For example, use	visual models in the context of word problems.
a visual fraction model to represent 5/4 as the product $5 \times (1/4)$,	
recording the conclusion by the equation $5/4 = 5 \times (1/4)$; b)	
Understand a multiple of a/b as a multiple of 1/b, and use this	
understanding to multiply a fraction by a whole number. For	
example, use a visual fraction model to express $3 \times (2/5)$ as	
$6 \times (1/5)$, recognizing this product as $6/5$. (In general,	
$n \times (a/b) = (n \times a)/b.$; c) Solve word problems involving	
multiplication of a fraction by a whole number, e.g., by using	
visual fraction models and equations to represent the problem.	
For example, if each person at a party will eat 3/8 of a pound of	
roast beef, and there will be 5 people at the party, how many	
pounds of roast beef will be needed? Between what two whole	
numbers does your answer lie?	
4.NF.C.5 Express a fraction with denominator 10 as an	4.NF.C.5 Explore and explain using models, words, and numbers
equivalent fraction with denominator 100, and use this	that a fraction with a denominator of 10 as an equivalent
technique to add two fractions with respective denominators 10	fraction with denominator of 100, and use this technique to add
and 100.4 For example, express 3/10 as 30/100, and add 3/10 +	two fractions with respective denominators of 10 and 100.
4/100 = 34/100.	
4.NF.C.6 Use decimal notation for fractions with denominators	4.NF.C.6 Explore and explain decimal notation for fractions with
10 or 100. For example, rewrite 0.62 as 62/100; describe a length	denominators of 10 and 100 using models, words, and numbers.
as 0.62 meters; locate 0.62 on a number line diagram.	

WA State K–12 Learning Standards for Mathematics (2011)	WA State K-12 Learning Standards for Mathematics (2024)
4.NF.C.7 Compare two decimals to hundredths by reasoning	4.NF.C.7 Compare two decimals to hundredths by reasoning
about their size. Recognize that comparisons are valid only	about their size. Understand that comparisons are valid only
when the two decimals refer to the same whole. Record the	when the two decimals refer to the same whole. Record the
results of comparisons with the symbols >, =, or <, and justify	results of comparisons with the symbols >, =, or <, and justify
the conclusions, e.g., by using a visual model.	the conclusions by using multiple strategies or visual models.
4.MD.A.2 Use the four operations to solve word problems	4.MD.A.2 Use the four operations to flexibly, efficiently, and
involving distances, intervals of time, liquid volumes, masses of	accurately solve word problems involving distances, intervals of
objects, and money, including problems involving simple	time, liquid volumes, masses of objects, and money, including
fractions or decimals, and problems that require expressing	problems involving simple fractions or decimals, and problems
measurements given in a larger unit in terms of a smaller unit.	that require expressing measurements given in a larger unit in
Represent measurement quantities using diagrams such as	terms of a smaller unit. Represent measurement quantities using
number line diagrams that feature a measurement scale.	multiple visual models.
4.MD.B.4 Make a line plot to display a data set of	4.MD.B.4 Make a line plot to display a data set of
measurements in fractions of a unit (1/2, 1/4, 1/8). Solve	measurements in fractions of a unit $(\frac{1}{2}, \frac{1}{4}, \frac{1}{8})$. Flexibly, efficiently,
problems involving addition and subtraction of fractions by	and accurately solve problems involving addition and
using information presented in line plots. For example, from a	subtraction of fractions by using information presented in line
line plot find and interpret the difference in length between the	plots.
longest and shortest specimens in an insect collection.	
4.MD.C.5 Recognize angles as geometric shapes that are	4.MD.C.5 Demonstrate understanding of angles as geometric
formed wherever two rays share a common endpoint, and	shapes that are formed wherever two rays share a common
understand concepts of angle measurement; a) An angle is	endpoint and understand concepts of angle measure.
measured with reference to a circle with its center at the	
common endpoint of the rays, by considering the fraction of the	
circular arc between the points where the two rays intersect the	
circle. An angle that turns through 1/360 of a circle is called a	
"one-degree angle," and can be used to measure angles; b) An	
angle that turns through n one-degree angles is said to have an	
angle measure of n degrees.	

WA State K–12 Learning Standards for Mathematics (2011)	WA State K–12 Learning Standards for Mathematics (2024)
4.MD.C.7 Recognize angle measure as additive. When an angle	4.MD.C.7 Demonstrate understanding that when an angle is
is decomposed into non-overlapping parts, the angle measure	decomposed into non-overlapping parts, the angle measure of
of the whole is the sum of the angle measures of the parts.	the whole is the sum of the angle measures of the parts.
Solve addition and subtraction problems to find unknown	Flexibly, efficiently, and accurately solve addition and
angles on a diagram in real world and mathematical problems,	subtraction problems to find unknown angles on a diagram in
e.g., by using an equation with a symbol for the unknown angle	real world and mathematical problems.
measure.	
Addition of Data Science Standards	4.DS.1 Generate data-based questions of interest to the
	students, generate ideas based on the questions, and refine the
	question as necessary.
Addition of Data Science Standards	4.DS.2 Determine strategies for collecting and considering data
	in a variety of ways including with the use of technology,
	evaluate whether additional data that should be collected to
	completely address the investigative question.
Addition of Data Science Standards	4.DS.3 Critically analyze data visualizations, including tables, bar
	graphs, line plots, or spreadsheets to support a claim related to
	the investigative question. Ask whether the data collected
	sufficiently addresses the investigative question.
Addition of Data Science Standards	4.DS.4 Interpret and communicate results, describing difference
	between groups, with teacher guidance. Make a statement(s)
	about the data collected to support the answer to the
	investigative question

WA State K-12 Learning Standards for Mathematics (2011)	WA State K–12 Learning Standards for Mathematics (2024)
5.NBT.A.1 Recognize that in a multi-digit number, a digit in one	5.NBT.A.1 Understand that in a multi-digit number, a digit in
place represents 10 times as much as it represents in the place	one place represents 10 times as much as it represents in the
to its right and 1/10 of what it represents in the place to its left.	place to its right and of what it represents in the place to its left.
5.NBT.A.3 Read, write, and compare decimals to thousandths.	5.NBT.A.3 Read, write, and compare decimals to thousandths.
a) Read and write decimals to thousandths using base-ten	
numerals, number names, and expanded form, e.g., 347.392 = 3	
\times 100 + 4 \times 10 + 7 \times 1 + 3 \times (1/10) + 9 \times (1/100) + 2 \times	
(1/1000). b) Compare two decimals to thousandths based on	
meanings of the digits in each place, using >, =, and < symbols	
to record the results of comparisons.	
5.NBT.A.4 Use place value understanding to round decimals to	5.NBT.A.4 Use place value understanding of decimals to
any place.	generate estimates to any place using a variety of estimation
	strategies.
5.NBT.B.5 Fluently multiply multi-digit whole numbers using	5.NBT.B.5 Flexibly, efficiently, and accurately multiply multi-
the standard algorithm.	digit whole numbers using strategies or algorithms.
5.NBT.B.6 Find whole-number quotients of whole numbers with	5.NBT.B.6 Find whole-number quotients of whole numbers with
up to four-digit dividends and two-digit divisors, using	up to four-digit dividends and two-digit divisors using strategies
strategies based on place value, the properties of operations,	based on place value and connected to the relationship
and/or the relationship between multiplication and division.	between multiplication and division including rectangular arrays,
Illustrate and explain the calculation by using equations,	partial quotients, and/or area models.
rectangular arrays, and/or area models.	

WA State K-12 Learning Standards for Mathematics (2011)	WA State K-12 Learning Standards for Mathematics (2024)
5.NBT.B.7 Add, subtract, multiply, and divide decimals to	5.NBT.B.7 Flexibly, efficiently, and accurately add, subtract,
hundredths, using concrete models or drawings and strategies	multiply, and divide decimals to hundredths, using concrete
based on place value, properties of operations, and/or the	models or drawings and strategies based on place value,
relationship between addition and subtraction; relate the	properties of operations, and/or the relationship between
strategy to a written method and explain the reasoning used.	addition and subtraction; relate the strategy to a written method
	and explain the reasoning used.
5.NF.A.1 Add and subtract fractions with unlike denominators	5.NF.A.1 Add and subtract fractions with unlike denominators
(including mixed numbers) by replacing given fractions with	(including mixed numbers) using flexible and efficient strategies,
equivalent fractions in such a way as to produce an equivalent	including replacing given fractions with equivalent fractions with
sum or difference of fractions with like denominators. For	like denominators. Justify using visual models (e.g., tape
example, 2/3 + 5/4 = 8/12 + 15/12 = 23/12. (In general, a/b +	diagrams or number lines) and equations.
c/d = (ad + bc)/bd.)	
5.NF.A.2 Solve word problems involving addition and	5.NF.A.2 Solve word problems involving addition and
subtraction of fractions referring to the same whole, including	subtraction of fractions referring to the same whole, including
cases of unlike denominators, e.g., by using visual fraction	cases of unlike denominators, e.g., by using visual fraction
models or equations to represent the problem. Use benchmark	models or equations to represent the problem. Use benchmark
fractions and number sense of fractions to estimate mentally	fractions and number sense of fractions to estimate mentally
and assess the reasonableness of answers. For example,	and assess the reasonableness of answers.
recognize an incorrect result $2/5 + 1/2 = 3/7$, by observing that	
3/7 < 1/2.	

5.NF.B.3 Interpret a fraction as division of the numerator by the denominator ($a/b = a \div b$). Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g., by using visual fraction models or equations to represent the problem. For example, interpret 3/4 as the result of dividing 3 by 4, noting that 3/4 multiplied by 4 equals 3, and that when 3 wholes are shared equally among 4 people each person has a share of size 3/4. If 9 people want to share a 50-pound sack of rice equally by weight, how many pounds of rice should each person get? Between what two whole numbers does your answer lie?

WA State K-12 Learning Standards for Mathematics (2024)

5.NF.B.3 Interpret a fraction as division, where a quantity (the numerator) is divided into equal parts (the denominator). Flexibly and efficiently solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g., by using visual fraction models or equations to represent the problem. Assess the reasonableness of answers using mental and estimation strategies.

5.NF.B.4 Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction. a. Interpret the product $(a/b) \times q$ as a parts of a partition of q into b equal parts; equivalently, as the result of a sequence of operations $a \times q \div b$. For example, use a visual fraction model to show $(2/3) \times 4 = 8/3$, and create a story context for this equation. Do the same with $(2/3) \times (4/5) = 8/15$. (In general, $(a/b) \times (c/d) = ac/bd$.) b. Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas.

5.NF.B.4 Apply and extend previous understandings of multiplication to flexibly, efficiently, and accurately multiply a fraction or whole number by a fraction.

5.NF.B.5 Interpret multiplication as scaling (resizing), by: a. Comparing the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication. b. Explaining why multiplying a given number by a fraction greater than 1 results in a product greater than the given number (recognizing multiplication by whole numbers greater than 1 as a familiar case); explaining why multiplying a given number by a fraction less than 1 results in a product smaller than the given number; and relating the principle of fraction equivalence $a/b = (n \times a)/(n \times b)$ to the effect

WA State K-12 Learning Standards for Mathematics (2024)

5.NF.B.5 Interpret multiplication as scaling (resizing) by estimating whether a product will be larger or smaller than a given factor based on the size of the other factor, without performing the indicated multiplication.

5.NF.B.6 Solve real world problems involving multiplication of fractions and mixed numbers, e.g., by using visual fraction models or equations to represent the problem.

of multiplying a/b by 1.

5.NF.B.6 Flexibly and efficiently solve real world problems involving multiplication of fractions and mixed numbers, e.g., by using visual fraction models or equations to represent the problem. Assess the reasonableness of answers using mental and estimation strategies.

5.NF.B.7 Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions. a) Interpret division of a unit fraction by a nonzero whole number, and compute such quotients. For example, create a story context for $(1/3) \div 4$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $(1/3) \div 4 = 1/12$ because $(1/12) \times 4 = 1/3$. **b)** Interpret division of a whole number by a unit fraction, and compute such quotients. For example, create a story context for $4 \div (1/5)$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $4 \div (1/5) =$ 20 because $20 \times (1/5) = 4$. **c)** Solve real world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions, e.g., by using visual fraction models and equations to represent the problem. For example, how much chocolate will each person get if 3 people share 1/2 lb of chocolate equally? How many 1/3-cup servings are in 2 cups of raisins?

WA State K-12 Learning Standards for Mathematics (2024)

5.NF.B.7 Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions using visual fraction models and equations to represent the problem.

5.MD.A.1 Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real world problems.

5.MD.A.1 Convert among different-sized standard measurement units within a given measurement system (e.g., convert to), and use these conversions in solving multi-step, real world problems. Assess the reasonableness of answers using mental and estimation strategies.

WA State K-12 Learning Standards for Mathematics (2011)	WA State K-12 Learning Standards for Mathematics (2024)
5.MD.C.3 Recognize volume as an attribute of solid figures and	5.MD.C.3 Recognize volume as an attribute of solid figures and
understand concepts of volume measurement. a) A cube with	understand concepts of volume measurement.
side length 1 unit, called a "unit cube," is said to have "one cubic	
unit" of volume, and can be used to measure volume. b) A solid	
figure which can be packed without gaps or overlaps using n	
unit cubes is said to have a volume of n cubic units.	
5.MD.C.5 Relate volume to the operations of multiplication and	5.MD.C.5 Relate volume to the operations of multiplication and
addition and solve real world and mathematical problems	addition and solve real world and mathematical problems
involving volume. a) Find the volume of a right rectangular	involving volume.
prism with whole-number side lengths by packing it with unit	
cubes, and show that the volume is the same as would be found	
by multiplying the edge lengths, equivalently by multiplying the	
height by the area of the base. Represent threefold whole	
number products as volumes, e.g., to represent the associative	
property of multiplication. b) Apply the formulas $V = I \times w \times h$	
and $V = b \times h$ for rectangular prisms to find volumes of right	
rectangular prisms with whole-number edge lengths in the	
context of solving real world and mathematical problems. c)	
Recognize volume as additive. Find volumes of solid figures	
composed of two non-overlapping right rectangular prisms by	
adding the volumes of the non-overlapping parts, applying this	
technique to solve real world problems.	
5.G.B.3 Understand that attributes belonging to a category of	5.G.B.3 Demonstrate understanding that attributes belonging
two-dimensional figures also belong to all subcategories of that	to a category of two-dimensional figures also belong to all
category. For example, all rectangles have four right angles and	subcategories of that category.
squares are rectangles, so all squares have four right angles.	

WA State K–12 Learning Standards for Mathematics (2011)	WA State K-12 Learning Standards for Mathematics (2024)
Addition of Data Science Standards	5.DS.1 Generate data-based questions of interest to the
	students, generate ideas based on the questions, and refine the
	question as necessary. Pose statistical questions that can
	compare two variables within a group, setting, or situation.
Addition of Data Science Standards	5.DS.2 Determine strategies for collecting and considering data
	in a variety of ways including with the use of technology.
	Understand that data may contain errors (missing values, etc.)
	and decisions have to be made on how to account for or resolve
	these issues.
Addition of Data Science Standards	5.DS.3 Critically analyze data visualizations, including tables, bar
	graphs, line plots, or spreadsheets to support a claim related to
	the investigative question. Compare and contrast different data
	visualizations to determine which transparently communicate
	results and interpretations.
Addition of Data Science Standards	5.DS.4 Interpret and communicate results, describing difference
	between groups, with teacher guidance. Make a statement(s)
	about the data collected to support the answer to the
	investigative question. Describe the difference between two
	groups with different conditions.

WA State K–12 Learning Standards for Mathematics (2011)	WA State K–12 Learning Standards for Mathematics (2024)
6.RP.A.1 Understand the concept of a ratio and use ratio	6.RP.A.1 Explain the concept of a ratio and flexibly, efficiently,
language to describe a ratio relationship between two	and accurately use ratio language to describe a ratio
quantities. For example, "The ratio of wings to beaks in the bird	relationship between two quantities.
house at the zoo was 2:1, because for every 2 wings there was 1	
beak." "For every vote candidate A received, candidate C	
received nearly three votes."	
6.RP.A.2 Understand the concept of a unit rate a/b associated	6.RP.A.2 Understand the concept of a unit rate <i>ab</i> associated
with a ratio a:b with $b \neq 0$, and use rate language in the context	with a ratio αb with $b \neq 0$ and use rate language in the context
of a ratio relationship. For example, "This recipe has a ratio of 3	of a ratio relationship.
cups of flour to 4 cups of sugar, so there is 3/4 cup of flour for	
each cup of sugar." "We paid \$75 for 15 hamburgers, which is a	
rate of \$5 per hamburger."	

6.RP.A.3 Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations. a) Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios. b) Solve unit rate problems including those involving unit pricing and constant speed. For example, if it took 7 hours to mow 4 lawns, then at that rate, how many lawns could be mowed in 35 hours? At what rate were lawns being mowed? c) Find a percent of a quantity as a rate per 100 (e.g., 30% of a quantity means 30/100 times the quantity); solve problems involving finding the whole, given a part and the percent. d) Use ratio reasoning to convert measurement units; manipulate and transform units appropriately when multiplying or dividing quantities.

WA State K-12 Learning Standards for Mathematics (2024)

6.RP.A.3 Flexibly, efficiently, and accurately demonstrate ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations to find different ways to express the same ratio. This includes working with unit rates (like price per item) and percents (a special ratio out of 100) and using ratios to convert between different measurement units, like inches to feet.

6.NS.A.1 Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions, e.g., by using visual fraction models and equations to represent the problem. For example, create a story context for (2/3) \div (3/4) and use a visual fraction model to show the quotient; use the relationship between multiplication and division to explain that $(2/3) \div (3/4) = 8/9$ because 3/4 of 8/9 is 2/3. (In general, $(a/b) \div (c/d) = ad/bc$.) How much chocolate will each person get if 3 people share 1/2 lb of chocolate equally? How many 3/4-cup servings are in 2/3 of a cup of yogurt? How wide is a rectangular strip of land with length 3/4 mi and area 1/2 square mi?

6.NS.A.1 Interpret and flexibly, efficiently, and accurately determine quotients of fractions, and solve word problems involving division of fractions by fractions, e.g., by using visual fraction models and equations to represent the problem.

6.NS.C.5 Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation.

6.NS.C.6 Understand a rational number as a point on the number line. Extend number line diagrams and coordinate axes familiar from previous grades to represent points on the line and in the plane with negative number coordinates. **a)**Recognize opposite signs of numbers as indicating locations on opposite sides of 0 on the number line; recognize that the opposite of the opposite of a number is the number itself, e.g., – (–3) = 3, and that 0 is its own opposite. **b)** Understand signs of numbers in ordered pairs as indicating locations in quadrants of the coordinate plane; recognize that when two ordered pairs differ only by signs, the locations of the points are related by reflections across one or both axes. **c)** Find and position integers and other rational numbers on a horizontal or vertical number line diagram; find and position pairs of integers and other rational numbers on a coordinate plane.

WA State K-12 Learning Standards for Mathematics (2024)

6.NS.C.5 Explain how positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation.

6.NS.C.6 Understand a rational number as a point on the number line. Extend number line diagrams and coordinate axes familiar from previous grades to place any number (integer or rational, positive or negative) on the line (horizontal or vertical) and understand the opposite of the opposite of a number is the distance between that number and zero [-(-3)= 3]. Understand the grid uses two numbers to find any spot, just like a map!

6.NS.C.7 Understand ordering and absolute value of rational numbers. a) Interpret statements of inequality as statements about the relative position of two numbers on a number line diagram. For example, interpret -3 > -7 as a statement that -3 is located to the right of -7 on a number line oriented from left to right. **b)** Write, interpret, and explain statements of order for rational numbers in real-world contexts. For example, write -3 oC > -7 oC to express the fact that -3 oC is warmer than -7 oC. c) Understand the absolute value of a rational number as its distance from 0 on the number line; interpret absolute value as magnitude for a positive or negative quantity in a real-world situation. For example, for an account balance of -30 dollars, write |-30| = 30 to describe the size of the debt in dollars. **d)** Distinguish comparisons of absolute value from statements about order. For example, recognize that an account balance less than -30 dollars represents a debt greater than 30 dollars.

WA State K-12 Learning Standards for Mathematics (2024)

6.NS.C.7 Understand ordering and absolute value of positive and negative rational numbers and integers using inequalities to write, interpret, and explain which number is bigger or smaller on a number line. Use absolute value to demonstrate how far a number is from zero. Apply comparisons in real world contexts like absolute distance on a map, comparing temperatures, or understanding the size of a debt.

6.EE.A.1 Write and evaluate numerical expressions involving whole-number exponents.

6.EE.A.1 Flexibly, efficiently, and accurately write and evaluate numerical expressions involving whole-number exponents.

6.EE.A.2 Write, read, and evaluate expressions in which letters stand for numbers. a) Write expressions that record operations with numbers and with letters standing for numbers. For example, express the calculation "Subtract y from 5" as 5 - y. **b)** Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, coefficient); view one or more parts of an expression as a single entity. For example, describe the expression 2 (8 + 7) as a product of two factors; view (8 + 7)as both a single entity and a sum of two terms. c) Evaluate expressions at specific values of their variables. Include expressions that arise from formulas used in real-world problems. Perform arithmetic operations, including those involving whole-number exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations). For example, use the formulas V = s3 and A = 6 s2 to find the volume and surface area of a cube with sides of length s = 1/2.

WA State K-12 Learning Standards for Mathematics (2024)

6.EE.A.2 Read, and evaluate expressions flexibly, efficiently, and accurately in which letters stand for numbers to write general instructions like "subtract y from 5" as a mathematical expression (5 - y). They'll also be able to break down more complex expressions into their parts (terms, factors) and understand the order of operations. Finally, they'll practice plugging specific values for the variables (evaluating the expression) to solve problems. This can involve using real-world formulas, like finding the volume of a box using a variable for the side length.

6.EE.A.3 Apply the properties of operations to generate equivalent expressions. For example, apply the distributive property to the expression 3 (2 + x) to produce the equivalent expression 6 + 3x; apply the distributive property to the expression 24x + 18y to produce the equivalent expression 6 (4x + 3y); apply properties of operations to y + y + y to produce the equivalent expression 3y.

6.EE.A.3 Apply the properties of operations flexibly, efficiently, and accurately to generate equivalent expressions including the distributive property.

WA State K-12 Learning Standards for Mathematics (2011)	WA State K–12 Learning Standards for Mathematics (2024)
6.EE.A.4 Identify when two expressions are equivalent (i.e., when	6.EE.A.4 Identify when two expressions are equivalent as both
the two expressions name the same number regardless of which	expressions will always yield the same outcome for any value of
value is substituted into them). For example, the expressions y +	the variable.
y + y and 3y are equivalent because they name the same	
number regardless of which number y stands for.	
6.G.A.1 Find the area of right triangles, other triangles, special	6.G.A.1 Find the area of right triangles, other triangles, special
quadrilaterals, and polygons by composing into rectangles or	quadrilaterals, and polygons by flexibly, efficiently, and
decomposing into triangles and other shapes; apply these	accurately composing into rectangles or decomposing into
techniques in the context of solving real-world and	triangles and other shapes; apply these techniques in the
mathematical problems.	context of solving real-world and mathematical problems.
6.SP.B.5 Summarize numerical data sets in relation to their	6.SP.B.5 Summarize numerical data sets in relation to their
context, such as by: a) Reporting the number of observations. b)	context including reporting data points, describe what's being
Describing the nature of the attribute under investigation,	measured, and find the "center" (mean and/or median) and
including how it was measured and its units of measurement. c)	"spread" (interquartile range and/or mean absolute deviation) of
Giving quantitative measures of center (median and/or mean)	the data. Understand the shape of the data and identify any
and variability (interquartile range and/or mean absolute	striking deviations (outliers) and connect these features to the
deviation), as well as describing any overall pattern and any	context where the data came from.
striking deviations from the overall pattern with reference to the	
context in which the data were gathered. d) Relating the choice	
of measures of center and variability to the shape of the data	
distribution and the context in which the data were gathered.	
Addition of Data Science Standards	6.DS.1 Formulate and recognize statistical investigative
	questions that are of interest to students to collect data from
	online sources and websites, smartphones, sensors, publicly
	available government agencies (National Oceanic and
	Atmospheric Association, state agencies, etc.), and other
	modern devices.

WA State K–12 Learning Standards for Mathematics (2011)	WA State K-12 Learning Standards for Mathematics (2024)
Addition of Data Science Standards	6.DS.2 Collect and record data with technology to identify and
	describe the characteristics of data sets. Understand that data
	can be collected (primary data) or existing data can be obtained
	from other sources (secondary data).
Addition of Data Science Standards	6.DS.3 Analyze data visualizations and describe measures of
	center and variability of quantitative data using appropriate
	displays (dot plots, boxplots). Describe key features of
	distributions for the variables including center, variability, and
	shape.
Addition of Data Science Standards	6.DS.4 Use statistical evidence from analyses to answer the
	statistical investigative question and communicate results with
	comprehensive answers with some teacher guidance.

where r is the unit rate.

WA State K-12 Learning Standards for Mathematics (2024) WA State K-12 Learning Standards for Mathematics (2011) **7.RP.A.1** Compute unit rates associated with ratios of fractions, **7.RP.A.1** Flexibly, efficiently, and accurately compute unit rates including ratios of lengths, areas and other quantities measured associated with ratios of fractions, including ratios of lengths, in like or different units. For example, if a person walks 1/2 mile areas and other quantities measured in like or different units. in each 1/4 hour, compute the unit rate as the complex fraction 1/2/1/4 miles per hour, equivalently 2 miles per hour. **7.RP.A.2** Recognize and represent proportional relationships **7.RP.A.2** Recognize and represent proportional relationships between quantities. a) Decide whether two quantities are in a between quantities, including using equivalent ratios in a table, proportional relationship, e.g., by testing for equivalent ratios in graphing on the coordinate plane to see of the graph is a a table or graphing on a coordinate plane and observing straight line through origin, identify the constant of whether the graph is a straight line through the origin. **b)** proportionality (unit rate) in tables, graphs, equations, diagrams, Identify the constant of proportionality (unit rate) in tables, and verbal descriptions, write equations for proportional graphs, equations, diagrams, and verbal descriptions of relationships, and analyze graphs to understand what the data proportional relationships. c) Represent proportional points tell them about the real-world situation, focusing on relationships by equations. For example, if total cost t is points like (0, 0) which represents no change and (1, r) where r is proportional to the number n of items purchased at a constant the unit rate. price p, the relationship between the total cost and the number of items can be expressed as t = pn. d) Explain what a point (x, y)y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points (0, 0) and (1, r)

7.NS.A.1 Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram. a) Describe situations in which opposite quantities combine to make 0. For example, a hydrogen atom has 0 charge because its two constituents are oppositely charged. b) Understand p + q as the number located a distance |q| from p_r in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world contexts. c) Understand subtraction of rational numbers as adding the additive inverse, p -q = p + (-q). Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts. d) Apply properties of operations as strategies to add and subtract rational numbers.

WA State K-12 Learning Standards for Mathematics (2024)

7.NS.A.1 Flexibly, efficiently, and accurately apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram showing the distance between two numbers is the absolute value of their difference, understand the concept of opposite quantities combining to zero (additive inverse), representing operations on number lines, and interpreting real-world scenarios in context.

7.NS.A.2 Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers. a) Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as (-1)(-1) = 1 and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts. **b)** Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If p and g are integers, then -(p/q) = (-p)/q = p/(-q). Interpret quotients of rational numbers by describing real-world contexts. c) Apply properties of operations as strategies to multiply and divide rational numbers. d) Convert a rational number to a decimal using long division; know that the decimal form of a rational number terminates in 0s or eventually repeats.

WA State K-12 Learning Standards for Mathematics (2024)

7.NS.A.2 Flexibly, efficiently, and accurately apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers including the distributive property and properties of operations. Understand integers can be divided as long as the divisor isn't zero, resulting in rational numbers and convert rational numbers into decimals using long division, recognizing that the decimal form either ends in 0s or repeats eventually, and interpreting real-world contexts.

- **7.EE.A.1** Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.
- **7.EE.A.2** Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are related. For example, a + 0.05a = 1.05a means that "increase by 5%" is the same as "multiply by 1.05."
- **7.EE.A.1** Flexibly, efficiently, and accurately use properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.
- **7.EE.A.2** Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are related.

7.EE.B.3 Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. For example: If a woman making \$25 an hour gets a 10% raise, she will make an additional 1/10 of her salary an hour, or \$2.50, for a new salary of \$27.50. If you want to place a towel bar 9 3/4 inches long in the center of a door that is 27 1/2 inches wide, you will need to place the bar about 9 inches from each edge; this estimate can be used as a check on the exact computation.

WA State K-12 Learning Standards for Mathematics (2024)

7.EE.B.3 Flexibly, efficiently, and accurately solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies.

7.EE.B.4 Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities. a) Solve word problems leading to equations of the form px + q = r and p(x + q) = r, where p, q, and rare specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, the perimeter of a rectangle is 54 cm. Its length is 6 cm. What is its width? **b)** Solve word problems leading to inequalities of the form px + q > r or px + q < r, where p, q, and rare specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem. For example: As a salesperson, you are paid \$50 per week plus \$3 per sale. This week you want your pay to be at least \$100. Write an inequality for the number of sales you need to make, and describe the solutions.

WA State K-12 Learning Standards for Mathematics (2024)

7.EE.B.4 Use variables to represent quantities in a real-world or mathematical problem and write simple equations and inequalities to flexibly, efficiently, and accurately solve problems by reasoning about the quantities. Compare solving the same problem algebraically vs. with arithmetic, explaining the steps involved in each approach. Graph the solutions of these inequalities and interpret them in context of the problem.

7.G.A.1 Solve problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.

7.G.A.1 Flexibly, efficiently, and accurately solve problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.

7.SP.C.7 Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy. **a)** Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events. For example, if a student is selected at random from a class, find the probability that Jane will be selected and the probability that a girl will be selected. **b)** Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process. For example, find the approximate probability that a spinning penny will land heads up or that a tossed paper cup will land open-end down. Do the outcomes for the spinning penny appear to be equally likely based on the observed frequencies?

WA State K-12 Learning Standards for Mathematics (2024)

7.SP.C.7 Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy.

WA State K-12 Learning Standards for Mathematics (2011)	WA State K-12 Learning Standards for Mathematics (2024)
7.SP.C.8 Find probabilities of compound events using organized	7.SP.C.8 Find probabilities of compound events using organized
lists, tables, tree diagrams, and simulation. a) Understand that,	lists, tables, tree diagrams, and simulation, understanding the
just as with simple events, the probability of a compound event	probability of a compound event is a fraction of the outcomes
is the fraction of outcomes in the sample space for which the	of the sample space. Design and use a simulation to generate
compound event occurs. b) Represent sample spaces for	frequencies for compound events.
compound events using methods such as organized lists, tables,	
and tree diagrams. For an event described in everyday language	
(e.g., "rolling double sixes"), identify the outcomes in the sample	
space which compose the event. c) Design and use a simulation	
to generate frequencies for compound events. For example, use	
random digits as a simulation tool to approximate the answer to	
the question: If 40% of donors have type A blood, what is the	
probability that it will take at least 4 donors to find one with	
type A blood?	
Addition of Data Science Standards	7.DS.1 Pose statistical investigative questions about a broader
	population using samples taken from the population.
Addition of Data Science Standards	7.DS.2 Understand information from a sample is valid only if the
	sample is representative of that population. Understand data
	can be used to make comparisons between different groups at
	one point in time and the same group over time.
Addition of Data Science Standards	7.DS.3 Identify, determine, and interpret measures of center
	(mean and median) and measures of variability (range,
	interquartile range) to answer a statistically investigative
	question, summarizing the distribution of data using the
	measures of center and variability. Use reasoning about
	distributions to compare two groups based on the variables.

WA State K-12 Learning Standards for Mathematics (2011)	WA State K-12 Learning Standards for Mathematics (2024)
Addition of Data Science Standards	7.DS.4 Acknowledge that looking beyond the data is feasible
	and recognize the uncertainty caused by sample-to-sample
	variability when making comparisons and/or conclusions from
	data to answer the investigative question.

Grade 8

WA State K–12 Learning Standards for Mathematics (2011)	WA State K–12 Learning Standards for Mathematics (2024)
8.NS.A.1 Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number.	8.NS.A.1 Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers flexibly, efficiently, and accurately show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number.
8.EE.A.2 Use square root and cube root symbols to represent solutions to equations of the form $x2 = p$ and $x3 = p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{2}$ is irrational.	8.EE.A.2 Use square roots and cube roots where p is a positive rational number. Use square root symbols to represent solutions to equations of the form $x^2 = p$. Evaluate square roots of small perfect squares. Use cube root symbols to represent solutions to equations of the form $x^3 = p$ and evaluate cube roots of small perfect cubes. Know that $\sqrt{2}$ is irrational.
8.EE.C.7 Solve linear equations in one variable. a. Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form $x = a$, $a = a$, or $a = b$ results (where a and b are different numbers). b. Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.	8.EE.C.7 Flexibly, efficiently, and accurately solve linear equations in one variable with one solution, infinitely many solutions, or no solutions and solve linear equations with rational number coefficients where solution paths may require using the distributive property and combining like terms.

WA State K-12 Learning Standards for Mathematics (2011)	WA State K-12 Learning Standards for Mathematics (2024)
8.EE.C.8 Analyze and solve pairs of simultaneous linear	8.EE.C.8 Analyze and flexibly, efficiently, and accurately solve
equations. a) Understand that solutions to a system of two	pairs of simultaneous linear equations, understanding the
linear equations in two variables correspond to points of	solution to a system of linear equations is the point of
intersection of their graphs, because points of intersection	intersection, solve systems of linear equations using a variety of
satisfy both equations simultaneously. b) Solve systems of two	strategies (algebraically, graphically, numerically in tables,
linear equations in two variables algebraically, and estimate	verbally, etc.) in mathematical problems and real-world contexts.
solutions by graphing the equations. Solve simple cases by	
inspection. For example, $3x + 2y = 5$ and $3x + 2y = 6$ have no	
solution because $3x + 2y$ cannot simultaneously be 5 and 6. c)	
Solve real-world and mathematical problems leading to two	
linear equations in two variables. For example, given coordinates	
for two pairs of points, determine whether the line through the	
first pair of points intersects the line through the second pair.	
8.G.A.1 Verify experimentally the properties of rotations,	8.G.A.1 Verify experimentally the properties of rotations,
reflections, and translations: a) Lines are taken to lines, and line	reflections, and translations.
segments to line segments of the same length. b) Angles are	
taken to angles of the same measure. c) Parallel lines are taken	
to parallel lines.	
Addition of Data Science Standards	8.DS.1 Formulate statistical investigative questions to articulate
	research topics and uncover patterns of association seen in
	bivariate categorical data, that multiple investigative questions
	may exist for a research topic and must take into account
	context.
Addition of Data Science Standards	8.DS.2 Understand how to interrogate the data to determine
	how the data were collected, from whom they were collected,
	what types of variables are in the data, how the variables were
	measured, and possible outcomes for the variables.

WA State K-12 Learning Standards for Mathematics (2011)	WA State K-12 Learning Standards for Mathematics (2024)
Addition of Data Science Standards	8.DS.3 Create data visualizations about a data set. Organize and
	present the data in appropriate ways, including in tables and
	scatter plots, and incorporate other relevant information that
	helps to tell a story and support a claim about the data.
Addition of Data Science Standards	8.DS.4 Generalize beyond the sample providing statistical
	evidence for the conclusion, being sure to address limitations of
	the sample, evidenced in the data. Consider the reasonableness
	of the results.

High School (HS)

Standards noted with "Credits 1 & 2 of HS math" have been revised to reflect specific content students should learn in the first two credits of high school math.

Standards noted with "Credit 3 of HS math" are standards students may learn in their third credit math class aligned with their High School and Beyond Plan.

For ease of comparison, the standards in this crosswalk are grouped by their CCSS conceptual categories.

Number and Quantity

WA State K–12 Learning Standards for Mathematics (2011)	WA State K-12 Learning Standards for Mathematics (2024)
N.RN.A.1 Explain how the definition of the meaning of rational	N.RN.A.1 Flexibly, efficiently, and accurately explain how the
exponents follows from extending the properties of integer	definition of the meaning of rational exponents follows from
exponents to those values, allowing for a notation for radicals in	extending the properties of integer exponents to those values
terms of rational exponents. For example, we define 51/3 to be	using a variety of strategies, allowing for a notation for radicals
the cube root of 5 because we want $(51/3)3 = 5(1/3)3$ to hold,	in terms of rational exponents.
so (51/3)3 must equal 5.	
N.RN.A.2 Rewrite expressions involving radicals and rational	N.RN.A.2 Rewrite expressions involving radicals and rational
exponents using the properties of exponents.	exponents using the properties of exponents. Use properties of
	rational and irrational numbers.
N.RN.B.3 Explain why the sum or product of two rational	N.RN.B.3 Explain why the sum or product of two rational
numbers is rational; that the sum of a rational number and an	numbers is rational; that the sum of a rational number and an
irrational number is irrational; and that the product of a nonzero	irrational number is irrational; and that the product of a nonzero
rational number and an irrational number is irrational.	rational number and an irrational number is irrational.
N.Q.A.1 Use units as a way to understand problems and to	N.Q.A.1 Use units as a way to understand problems and to
guide the solution of multi-step problems; choose and interpret	guide the solution of multi-step problems; choose and interpret
units consistently in formulas; choose and interpret the scale	units consistently in formulas; choose and interpret the scale
and the origin in graphs and data displays.	and the origin in graphs and data displays.
N.Q.A.2 Define appropriate quantities for the purpose of	N.Q.A.2 Define appropriate quantities for the purpose of
descriptive modeling.	descriptive modeling.

WA State K-12 Learning Standards for Mathematics (2011)	WA State K-12 Learning Standards for Mathematics (2024)
N.Q.A.3 Choose a level of accuracy appropriate to limitations	N.Q.A.3 Choose a level of accuracy appropriate to limitations
on measurement when reporting quantities.	on measurement when reporting quantities
N.CN.A.1 Know there is a complex number i such that $i2 = -1$,	N.CN.A.1 Know there is a complex number i such that $i2 = -1$,
and every complex number has the form a + bi with a and b	and every complex number has the form a + bi with a and b
real.	real.
N.CN.A.2 Use the relation i2 = -1 and the commutative,	N.CN.A.2 Use the relation $i2 = -1$ and the commutative,
associative, and distributive properties to add, subtract, and	associative, and distributive properties to add, subtract, and
multiply complex numbers.	multiply complex numbers.
N.CN.C.7 Solve quadratic equations with real coefficients that	N.CN.A.7 Solve quadratic equations with real coefficients that
have complex solutions.	have complex solutions.

Algebra

WA State K–12 Learning Standards for Mathematics (2011)	WA State K-12 Learning Standards for Mathematics (2024)
A.SSE.A.1 Interpret expressions that represent a quantity in	Credits 1 & 2 of HS math
terms of its context. a) Interpret parts of an expression, such as	A.SSE.A.1 a) Interpret expressions that represent a quantity in
terms, factors, and coefficients. b) Interpret complicated	terms of its context within linear, exponential, and quadratic
expressions by viewing one or more of their parts as a single	functions.
entity. For example, interpret P(1+r)n as the product of P and a	
factor not depending on P.	Credit 3 of HS math
	A.SSE.A.1 a), b) Interpret expressions that represent a quantity
	in terms of its context.
A.SSE.A.2 Use the structure of an expression to identify ways to	Credits 1 & 2 of HS math
rewrite it. For example, see x4 - y4 as (x2)2 - (y2)2, thus	A.SSE.A.2 Use the structure of an expression to identify ways to
recognizing it as a difference of squares that can be factored as	rewrite it within exponential and quadratic functions.
(x2 - y2)(x2 + y2).	
	Credit 3 of HS math
	A.SSE.A.2 Use the structure of an expression to identify ways to
	rewrite it.
A.SSE.B.3 Choose and produce an equivalent form of an	Credits 1 & 2 of HS math
expression to reveal and explain properties of the quantity	A.SSE.B.3 a), c) Flexibly, efficiently, and accurately create an
represented by the expression.*	equivalent form of an expression to reveal and explain
a) Factor a quadratic expression to reveal the zeros of the	properties of the quantity represented by the expression
function it defines.	including factoring quadratic expressions and using properties
b) Complete the square in a quadratic expression to reveal the	of exponents to create equivalent forms of exponential
maximum or minimum value of the function it defines.	expressions to reveal properties of interest in the function.
c) Use the properties of exponents to transform expressions for	
exponential functions. For example the expression 1.15t can be	Credit 3 of HS math
rewritten as $(1.151/12)12t \approx 1.01212t$ to reveal the approximate	
equivalent monthly interest rate if the annual rate is 15%.	

WA State K-12 Learning Standards for Mathematics (2011)	WA State K-12 Learning Standards for Mathematics (2024)
	A.SSE.B.3 Flexibly, efficiently, and accurately create an
	equivalent form of an expression to reveal and explain
	properties of the quantity represented by the expression
	including factoring quadratic expressions, completing the
	square in a quadratic expression to reveal maximums or
	minimums, and using properties of exponents to create
	equivalent forms of exponential expressions to reveal properties
	of interest in the function.
A.SSE.B.4 Derive the formula for the sum of a finite geometric	A.SSE.B.4 Derive the formula for the sum of a finite geometric
series (when the common ratio is not 1), and use the formula to	series (when the common ratio is not 1), and use the formula to
solve problems. For example, calculate mortgage payments.*	solve problems.
A.APR.A.1 Understand that polynomials form a system	A.APR.A.1 Flexibly, efficiently, and accurately demonstrate that
analogous to the integers, namely, they are closed under the	polynomials form a system similar to the integers, namely, they
operations of addition, subtraction, and multiplication; add,	are closed under the operations of addition, subtraction, and
subtract, and multiply polynomials.	multiplication; add, subtract, and multiply polynomials.
A.APR.B.2 Know and apply the Remainder Theorem: For a	A.APR.B.2 Know and apply the Remainder Theorem: For a
polynomial $p(x)$ and a number a, the remainder on division by x	polynomial $p(x)$ and a number a, the remainder on division by x
- a is $p(a)$, so $p(a) = 0$ if and only if $(x - a)$ is a factor of $p(x)$.	- a is $p(a)$, so $p(a) = 0$ if and only if $(x - a)$ is a factor of $p(x)$.
A.APR.B.3 Identify zeros of polynomials when suitable	A.APR.B.3 Identify zeros of polynomials when suitable
factorizations are available, and use the zeros to construct a	factorizations are available, and use the zeros to construct a
rough graph of the function defined by the polynomial.	rough graph of the function defined by the polynomial.
A.APR.C.4 Prove polynomial identities and use them to describe	A.APR.C.4 Prove polynomial identities and use them to describe
numerical relationships. For example, the polynomial identity (x2	numerical relationships.
+ y2)2 = (x2 - y2)2 + (2xy)2 can be used to generate	
Pythagorean triples.	

WA State K-12 Learning Standards for Mathematics (2011)	WA State K–12 Learning Standards for Mathematics (2024)
A.APR.D.6 Rewrite simple rational expressions in different	A.APR.D.6 Rewrite simple rational expressions in different
forms; write $a(x)/b(x)$ in the form $q(x) + r(x)/b(x)$, where $a(x)$, $b(x)$,	forms; write $a(x)/b(x)$ in the form $q(x) + r(x)/b(x)$, where $a(x)$, $b(x)$,
q(x), and $r(x)$ are polynomials with the degree of $r(x)$ less than	q(x), and $r(x)$ are polynomials with the degree of $r(x)$ less than
the degree of b(x), using inspection, long division, or, for the	the degree of b(x), using inspection, long division, or, for the
more complicated examples, a computer algebra system.	more complicated examples, a computer algebra system.
A.CED.A.1 Create equations and inequalities in one variable and	A.CED.A.1 Flexibly, efficiently, and accurately create equations
use them to solve problems. Include equations arising from	and inequalities in one variable and use them to solve problems.
linear and quadratic functions, and simple rational and	Include equations arising from linear, quadratic, and exponential
exponential functions.	functions.
A.CED.A.2 Create equations in two or more variables to	A.CED.A.2 Flexibly, efficiently, and accurately create linear,
represent relationships between quantities; graph equations on	quadratic, exponential equations to represent relationships
coordinate axes with labels and scales.	between quantities; graph equations on coordinate axes with
	labels and scales.
A.CED.A.3 Represent constraints by equations or inequalities,	A.CED.A.3 Represent constraints by equations or inequalities,
and by systems of equations and/or inequalities, and interpret	and by systems of equations and/or inequalities, and interpret
solutions as viable or nonviable options in a modeling context.	solutions as viable or nonviable options in a modeling context
For example, represent inequalities describing nutritional and	within linear, quadratic, and exponential equations.
cost constraints on combinations of different foods.	
A.CED.A.4 Rearrange formulas to highlight a quantity of	A.CED.A.4 Flexibly, efficiently, and accurately rearrange
interest, using the same reasoning as in solving equations. For	formulas to highlight a quantity of interest, using the same
example, rearrange Ohm's law $V = IR$ to highlight resistance R .	reasoning as in solving equations within linear, quadratic, and
	exponential equations.
A.REI.A.1 Explain each step in solving a simple equation as	A.REI.A.1 Explain each step in solving an equation as following
following from the equality of numbers asserted at the previous	from the equality of numbers asserted at the previous step
step, starting from the assumption that the original equation	flexibly, efficiently, and accurately selecting and demonstrating
has a solution. Construct a viable argument to justify a solution	use of strategies to solve equations, starting from the
method.	assumption that the original equation has a solution. Construct
	a viable argument to justify a solution method.

WA State K-12 Learning Standards for Mathematics (2011)	WA State K-12 Learning Standards for Mathematics (2024)
A.REI.A.2 Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.	A.REI.A.2 Solve rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.
 A.REI.B.3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters. A.REI.B.4 Solve quadratic equations in one variable. a) Use the method of completing the square to transform any quadratic 	 A.REI.B.3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters. Credits 1 & 2 of HS math A.REI.B.4 b) Solve quadratic equations in one variable by
equation in x into an equation of the form $(x - p)2 = q$ that has the same solutions. Derive the quadratic formula from this form. b) Solve quadratic equations by inspection (e.g., for $x2 = 49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as a \pm bi for real numbers a and b.	inspection, taking square roots, and factoring as appropriate to the initial form of the equation. Credit 3 of HS math A.REI.B.4 a), b) Solve quadratic equations in one variable by inspection, factoring, completing the square and derive the quadratic formula from this form. Recognize when the quadratic formula give complex solutions and write them as a ± bi for real
A.REI.C.5 Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.	numbers a and b. A.REI.C.5 Demonstrate using a variety of strategies that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.
 A.REI.C.6 Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables. A.REI.C.7 Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and 	 A.REI.C.6 Flexibly, efficiently, and accurately solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables. A.REI.C.7 Flexibly, efficiently, and accurately solve a simple system consisting of a linear equation and a quadratic equation
graphically. For example, find the points of intersection between the line $y = -3x$ and the circle $x^2 + y^2 = 3$.	in two variables algebraically and graphically.

WA State K-12 Learning Standards for Mathematics (2011)	WA State K–12 Learning Standards for Mathematics (2024)
A.REI.D.10 Understand that the graph of an equation in two	A.REI.D.10 Understand that the graph of an equation in two
variables is the set of all its solutions plotted in the coordinate	variables is the set of all its solutions plotted in the coordinate
plane, often forming a curve (which could be a line).	plane, often forming a curve (which could be a line).
A.REI.D.11 Explain why the x-coordinates of the points where	Credits 1 & 2 of HS math
the graphs of the equations $y = f(x)$ and $y = g(x)$ intersect are	A.REI.D.11 Using a variety of strategies explain the x-
the solutions of the equation $f(x) = g(x)$; find the solutions	coordinates of the points where the graphs of the equations $y =$
approximately, e.g., using technology to graph the functions,	f(x) and $y = g(x)$ intersect are the solutions of the equation $f(x)$
make tables of values, or find successive approximations.	= g(x); find the solutions approximately, e.g., using technology
Include cases where f(x) and/or g(x) are linear, polynomial,	to graph the functions, make tables of values, or find successive
rational, absolute value, exponential, and logarithmic functions.	approximations. Include cases where $f(x)$ and/or $g(x)$ are linear,
	exponential, and quadratic.
	Credit 3 of HS math
	A.REI.D.11 Using a variety of strategies explain why the x-
	coordinates of the points where the graphs of the equations $y =$
	f(x) and $y = g(x)$ intersect are the solutions of the equation $f(x)$
	= g(x) find the solutions approximately, e.g., using technology
	to graph the functions, make tables of values, or find successive
	approximations. Include cases where $f(x)$ and/or $g(x)$ are linear,
	polynomial, rational, absolute value, exponential, and
	logarithmic functions.
A.REI.D.12 Graph the solutions to a linear inequality in two	A.REI.D.12 Graph the solutions to a linear inequality in two
variables as a half-plane (excluding the boundary in the case of	variables as a half-plane (excluding the boundary in the case of
a strict inequality), and graph the solution set to a system of	a strict inequality), and graph the solution set to a system of
linear inequalities in two variables as the intersection of the	linear inequalities in two variables as the intersection of the
corresponding half-planes.	corresponding half-planes.

Functions

WA State K-12 Learning Standards for Mathematics (2011)	WA State K-12 Learning Standards for Mathematics (2024)
F.IF.A.1 Understand that a function from one set (called the	F.IF.A.1 Understand that a function from one set (called the
domain) to another set (called the range) assigns to each	domain) to another set (called the range) assigns to each
element of the domain exactly one element of the range. If f is a	element of the domain exactly one element of the range. If f is
function and x is an element of its domain, then f(x) denotes the	a function and x is an element of its domain, then $f(x)$ denotes
output of f corresponding to the input x. The graph of f is the	the output of f corresponding to the input x . The graph of f is
graph of the equation $y = f(x)$.	the graph of the equation $y = f(x)$.
F.IF.A.2 Use function notation, evaluate functions for inputs in	F.IF.A.2 Use function notation, evaluate functions for inputs in
their domains, and interpret statements that use function	their domains, and interpret statements that use function
notation in terms of a context.	notation in terms of a context.
F.IF.A.3 Recognize that sequences are functions, sometimes	F.IF.A.3 Recognize that sequences are functions, sometimes
defined recursively, whose domain is a subset of the integers.	defined recursively, whose domain is a subset of the integers.
For example, the Fibonacci sequence is defined recursively by	
$f(0) = f(1) = 1$, $f(n+1) = f(n) + f(n-1)$ for $n \ge 1$.	

WA State K-12 Learning Standards for Mathematics (2011) WA State K-12 Learning Standards for Mathematics (2024) F.IF.B.4 For a function that models a relationship between two Credits 1 & 2 of HS math quantities, interpret key features of graphs and tables in terms F.IF.B.4 For a function that models a relationship between two of the quantities, and sketch graphs showing key features given quantities in context, interpret key features of graphs and tables a verbal description of the relationship. Key features include: in terms of the quantities, and sketch graphs showing key intercepts; intervals where the function is increasing, decreasing, features given a verbal description of the relationship. Key positive, or negative; relative maximums and minimums; features include intercepts; intervals where the function is symmetries; end behavior; and periodicity.* increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries for functions including linear, exponential, and quadratic. Credit 3 of HS math F.IF.B.4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries. Functions can include: polynomial, radical, rational, logarithms, absolute value, piecewise, and trigonometric. Linear, exponential, and quadratic relationships in increased complexity. **F.IF.B.5** Relate the domain of a function to its graph and, where Credits 1 & 2 of HS math applicable, to the quantitative relationship it describes. For F.IF.B.5 Relate the domain of a function to its graph and, where example, if the function h(n) gives the number of person-hours applicable, to the quantitative relationship it describes in linear, it takes to assemble n engines in a factory, then the positive exponential, or quadratic contexts.

Credit 3 of HS math

integers would be an appropriate domain for the function.*

WA State K–12 Learning Standards for Mathematics (2011)	WA State K-12 Learning Standards for Mathematics (2024)
	F.IF.B.5 Relate the domain of a function to its graph and, where
	applicable, to the quantitative relationship it describes in
	context. Functions can include: polynomial, radical, rational,
	logarithms, absolute value, piecewise, and trigonometric. Linear,
	exponential, and quadratic relationships in increased complexity.
F.IF.B.6 Calculate and interpret the average rate of change of a	F.IF.B.6 Calculate and interpret the average rate of change of a
function (presented symbolically or as a table) over a specified	function (represented symbolically or as a table) over a specified
interval. Estimate the rate of change from a graph.	interval. Estimate the rate of change from a graph.

- **F.IF.C.7** Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.
- **a)** Graph linear and quadratic functions and show intercepts, maxima, and minima.
- **b)** Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.
- **c)** Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.
- **e)** Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.

WA State K-12 Learning Standards for Mathematics (2024)

Credits 1 & 2 of HS math

F.IF.C.7 a), e) Graph linear, exponential, and quadratic functions expressed symbolically and show key features of the graph, including intercepts, maximum, minimum, and interpreting end behavior for exponential functions by hand in simple cases and using technology for more complicated cases.

F.IF.C.7 a), b), c), e) Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases including linear, quadratic, exponential, square root, cube root, and piecewise-defined functions, including step functions and absolute value functions, polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior, and exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.

- **F.IF.C.8** Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.
- **a)** Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.
- **b)** Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as $y = (1.02)^t$, $y = (0.97)^t$, $y = (1.01)12^t$, $y = (1.2)^t/10$, and classify them as representing exponential growth or decay.

F.IF.C.9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.

WA State K-12 Learning Standards for Mathematics (2024)

Credits 1 & 2 of HS math

F.IF.C.8 Flexibly, efficiently, and accurately write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function including zeros and symmetry, using factoring for quadratic functions and integer constants for time with exponential growth and decay.

Credit 3 of HS math

F.IF.C.8 Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function, including factoring and completing the square to reveal zeros, symmetry, and extreme values of a quadratic functions and non-integer constants for time with exponential growth and decay in context.

Credits 1 & 2 of HS math

F.IF.C.9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). Functions could be linear, exponential, or quadratic.

Credit 3 of HS math

F.IF.C.9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). Functions can include: polynomial, radical, rational, logarithms, absolute value, piecewise, and trigonometric. Linear, exponential, and quadratic relationships in increased complexity.

WA State K–12 Learning Standards for Mathematics (2011)	WA State K-12 Learning Standards for Mathematics (2024)
F.BF.A.1 Write a function that describes a relationship between	Credits 1 & 2 of HS math
two quantities. a) Determine an explicit expression, a recursive	F.BF.A.1 a), b) Flexibly, efficiently, and accurately write a
process, or steps for calculation from a context. b) Combine	function that describes a relationship between two quantities,
standard function types using arithmetic operations. For	including linear and exponential arithmetic and geometric
example, build a function that models the temperature of a	sequences in context.
cooling body by adding a constant function to a decaying	
exponential, and relate these functions to the model.	Credit 3 of HS math
	F.BF.A.1 a), b) Write a function that describes a relationship
	between two quantities including determining an explicit
	expression, recursive process, or steps for calculation from a
	context, and combining standard function types using
	arithmetic operations.
F.BF.A.2 Write arithmetic and geometric sequences both	Credits 1 & 2 of HS math
recursively and with an explicit formula, use them to model	F.BF.A.2 Write arithmetic and geometric sequences both
situations, and translate between the two forms.	recursively and with an explicit formula, use them to model
	linear and exponential situations, and translate between two
	forms.
	Credit 3 of HS math
	F.BF.A.2 Write arithmetic and geometric sequences both
	recursively and with an explicit formula, use them to model
	situations, and translate between the two forms.
F.BF.B.3 Identify the effect on the graph of replacing $f(x)$ by $f(x)$	F.BF.B.3 Identify the effect on the graph of replacing $f(x)$ by $f(x)$
+ k, k $f(x)$, $f(kx)$, and $f(x + k)$ for specific values of k (both positive	+ k, k f(x), f(kx), and f(x + k) for specific values of k (both positive
and negative); find the value of k given the graphs. Experiment	and negative); find the value of k given the graphs. Using a
with cases and illustrate an explanation of the effects on the	variety of strategies, experiment with cases and illustrate an
graph using technology. Include recognizing even and odd	explanation of the effects on the graph using technology.
functions from their graphs and algebraic expressions for them.	

WA State K-12 Learning Standards for Mathematics (2011)	WA State K-12 Learning Standards for Mathematics (2024)
F.BF.B.4 Find inverse functions. a) Solve an equation of the form	F.BF.B.4 Find inverse functions through focus on relationships
f(x) = c for a simple function f that has an inverse and write an	between inputs and outputs.
expression for the inverse. For example, $f(x) = 2 \times 3$ or $f(x) =$	
$(x+1)/(x-1)$ for $x \ne 1$.	
F.LE.A.1 Distinguish between situations that can be modeled	F.LE.A.1 a), b), c) Distinguish between situations that can be
with linear functions and with exponential functions.	modeled with linear functions (equal differences over equal
a) Prove that linear functions grow by equal differences over	intervals) and with exponential functions (equal factors over
equal intervals, and that exponential functions grow by equal	equal intervals), recognizing constant rates per unit interval, and
factors over equal intervals.	growth or decay by a constant percent rate per unit interval.
b) Recognize situations in which one quantity changes at a	
constant rate per unit interval relative to another.	
c) Recognize situations in which a quantity grows or decays by a	
constant percent rate per unit interval relative to another.	
F.LE.A.2 Construct linear and exponential functions, including	F.LE.A.2 Flexibly, efficiently, and accurately construct linear and
arithmetic and geometric sequences, given a graph, a	exponential functions given a graph, a description of a
description of a relationship, or two input-output pairs (include	relationship, or two input-output pairs (include reading these
reading these from a table).	from a table).
F.LE.A.3 Observe using graphs and tables that a quantity	Credits 1 & 2 of HS math
increasing exponentially eventually exceeds a quantity	F.LE.A.3 Observe using graphs and tables that a quantity
increasing linearly, quadratically, or (more generally) as a	increasing exponentially eventually exceeds a quantity
polynomial function.	increasing linearly, quadratically.
	Credit 3 of HS math
	F.LE.A.3 Observe using graphs and tables that a quantity
	increasing exponentially eventually exceeds a quantity
	increasing linearly, quadratically, or as a polynomial function.

WA State K–12 Learning Standards for Mathematics (2011)	WA State K-12 Learning Standards for Mathematics (2024)
F.LE.A.4 For exponential models, express as a logarithm the	F.LE.A.4 For exponential models, express as a logarithm the
solution to ab ^{ct} = d where a, c, and d are numbers and the base	solution to $ab^{ct} = d$ where a, c, and d are numbers and the base
b is 2, 10, or e; evaluate the logarithm using technology.	b is 2, 10, or e; evaluate the logarithm using technology.
F.LE.B.5 Interpret the parameters in a linear or exponential	F.LE.A.5 Interpret the parameters in a linear or exponential
function in terms of a context.	function in terms of a context.
F.TF.A.1 Understand radian measure of an angle as the length	F.TF.A.1 Understand radian measure of an angle as the length
of the arc on the unit circle subtended by the angle.	of the arc on the unit circle subtended by the angle.
F.TF.A.2 Explain how the unit circle in the coordinate plane	F.TF.A.2 Explain how the unit circle in the coordinate plane
enables the extension of trigonometric functions to all real	enables the extension of trigonometric functions to all real
numbers, interpreted as radian measures of angles traversed	numbers, interpreted as radian measures of angles traversed
counterclockwise around the unit circle.	counterclockwise around the unit circle.
F.TF.B.5 Choose trigonometric functions to model periodic	F.TF.B.5 Choose trigonometric functions to model periodic
phenomena with specified amplitude, frequency, and midline.	phenomena with specified amplitude, frequency, and midline.
F.TF.C.8 Prove the Pythagorean identity $sin2(\theta) + cos2(\theta) = 1$	F.TF.C.8 Prove the Pythagorean identity $sin2(\theta) + cos2(\theta) = 1$
and use it to find $sin(\theta)$, $cos(\theta)$, or $tan(\theta)$ given $sin(\theta)$, $cos(\theta)$, or	and use it to find $sin(\theta)$, $cos(\theta)$, or $tan(\theta)$ given $sin(\theta)$, $cos(\theta)$, or
$tan(\theta)$ and the quadrant of the angle.	$tan(\theta)$ and the quadrant of the angle.

Modeling

WA State K-12 Learning Standards for Mathematics (2011)	WA State K–12 Learning Standards for Mathematics (2024)
Modeling is best interpreted not as a collection of isolated	Modeling is best interpreted not as a collection of isolated
topics but rather in relation to other standards. Making	topics but rather in relation to other standards. Making
mathematical models is a Standard for Mathematical Practice,	mathematical models is a Standard for Mathematical Practice,
and specific modeling standards appear throughout the high	and specific modeling standards appear throughout the high
school standards.	school standards.

Geometry

WA State K-12 Learning Standards for Mathematics (2011)	WA State K-12 Learning Standards for Mathematics (2024)
G.CO.A.1 Know precise definitions of angle, circle, perpendicular	G.CO.A.1 Know precise definitions of angle, circle, perpendicular
line, parallel line, and line segment, based on the undefined	line, parallel line, and line segment, based on the undefined
notions of point, line, distance along a line, and distance around	notions of point, line, distance along a line, and distance around
a circular arc.	a circular arc.
G.CO.A.2 Represent transformations in the plane using, e.g.,	G.CO.A.2 Flexibly, efficiently, and accurately represent
transparencies and geometry software; describe transformations	transformations in the plane, e.g., transparencies and geometry
as functions that take points in the plane as inputs and give	software; describe transformations as functions that take points
other points as outputs. Compare transformations that preserve	in the plane as inputs and give other points as outputs.
distance and angle to those that do not (e.g., translation versus	Compare transformations that preserve distance and angle to
horizontal stretch).	those that do not (e.g., translation versus horizontal stretch).
G.CO.A.3 Given a rectangle, parallelogram, trapezoid, or regular	G.CO.A.3 Given a rectangle, parallelogram, trapezoid, or regular
polygon, describe the rotations and reflections that carry it onto	polygon, describe the rotations and reflections that carry it onto
itself.	itself.
G.CO.A.4 Develop definitions of rotations, reflections, and	G.CO.A.4 Develop definitions of rotations, reflections, and
translations in terms of angles, circles, perpendicular lines,	translations in terms of angles, circles, perpendicular lines,
parallel lines, and line segments.	parallel lines, and line segments.
G.CO.A.5 Given a geometric figure and a rotation, reflection, or	G.CO.B.5 Given a geometric figure and a rotation, reflection, or
translation, draw the transformed figure using, e.g., graph paper,	translation, draw the transformed figure using, e.g., graph paper,
tracing paper, or geometry software. Specify a sequence of	tracing paper, or geometry software. Flexibly, efficiently, and
transformations that will carry a given figure onto another.	accurately specify a sequence of transformations that will carry a
	given figure onto another.
G.CO.B.6 Use geometric descriptions of rigid motions to	G.CO.B.6 Use geometric descriptions of rigid motions to
transform figures and to predict the effect of a given rigid	transform figures and to predict the effect of a given rigid
motion on a given figure; given two figures, use the definition of	motion on a given figure; given two figures, use the definition of
congruence in terms of rigid motions to decide if they are	congruence in terms of rigid motions to decide if they are
congruent.	congruent.

WA State K–12 Learning Standards for Mathematics (2011)	WA State K-12 Learning Standards for Mathematics (2024)
G.CO.B.7 Use the definition of congruence in terms of rigid	G.CO.B.7 Use the definition of congruence in terms of rigid
motions to show that two triangles are congruent if and only if	motions to show that two triangles are congruent if and only if
corresponding pairs of sides and corresponding pairs of angles	corresponding pairs of sides and corresponding pairs of angles
are congruent.	are congruent.
G.CO.B.8 Explain how the criteria for triangle congruence (ASA,	G.CO.B.8 Explain how the criteria for triangle congruence (ASA,
SAS, and SSS) follow from the definition of congruence in terms	SAS, and SSS) follow from the definition of congruence in terms
of rigid motions.	of rigid motions.
G.CO.C.9 Prove theorems about lines and angles. Theorems	G.CO.C.9 Flexibly, efficiently, and accurately prove theorems
include: vertical angles are congruent; when a transversal	about lines and angles: vertical, transversals, alternate interior
crosses parallel lines, alternate interior angles are congruent and	and exterior, perpendicular bisectors, etc.
corresponding angles are congruent; points on a perpendicular	
bisector of a line segment are exactly those equidistant from the	
segment's endpoints.	
G.CO.C.10 Prove theorems about triangles. Theorems include:	G.CO.C.10 Flexibly, efficiently, and accurately prove theorems
measures of interior angles of a triangle sum to 180°; base	about triangles: interior angles, base angles, segments joining
angles of isosceles triangles are congruent; the segment joining	midpoint of two sides, and medians of a triangle.
midpoints of two sides of a triangle is parallel to the third side	
and half the length; the medians of a triangle meet at a point.	
G.CO.C.11 Prove theorems about parallelograms. Theorems	G.CO.C.11 Flexibly, efficiently, and accurately prove theorems
include: opposite sides are congruent, opposite angles are	about parallelograms: congruence of opposite sides and
congruent, the diagonals of a parallelogram bisect each other,	opposite angles, properties of diagonals.
and conversely, rectangles are parallelograms with congruent	
diagonals.	

WA State K–12 Learning Standards for Mathematics (2011)	WA State K-12 Learning Standards for Mathematics (2024)
G.CO.D.12 Make formal geometric constructions with a variety	G.CO.D.12 Make formal geometric constructions with a variety
of tools and methods (compass and straightedge, string,	of tools and methods.
reflective devices, paper folding, dynamic geometric software,	
etc.). Copying a segment; copying an angle; bisecting a	
segment; bisecting an angle; constructing perpendicular lines,	
including the perpendicular bisector of a line segment; and	
constructing a line parallel to a given line through a point not	
on the line.	
G.CO.D.13 Construct an equilateral triangle, a square, and a	G.CO.D.13 Construct an equilateral triangle, a square, and a
regular hexagon inscribed in a circle.	regular hexagon inscribed in a circle.
G.SRT.A.1 Verify experimentally the properties of dilations	G.SRT.A.1 a), b) Verify experimentally the properties of
given by a center and a scale factor: a) A dilation takes a line not	dilations given by a center and a scale factor by seeing what
passing through the center of the dilation to a parallel line, and	happens to lines affected by a center of dilation and how scale
leaves a line passing through the center unchanged. b) The	factor affects line segments.
dilation of a line segment is longer or shorter in the ratio given	
by the scale factor.	
G.SRT.A.2 Given two figures, use the definition of similarity in	G.SRT.A.2 Given two figures, use the definition of similarity in
terms of similarity transformations to decide if they are similar;	terms of similarity transformations to decide if they are similar;
explain using similarity transformations the meaning of similarity	explain using similarity transformations the meaning of similarity
for triangles as the equality of all corresponding pairs of angles	for triangles as the equality of all corresponding pairs of angles
and the proportionality of all corresponding pairs of sides.	and the proportionality of all corresponding pairs of sides.
G.SRT.A.3 Use the properties of similarity transformations to	G.SRT.A.3 Use the properties of similarity transformations to
establish the Angle-Angle (AA) criterion for two triangles to be	establish the AA criterion for two triangles to be similar.
similar.	
G.SRT.B.4 Prove theorems about triangles. Theorems include: a	G.SRT.B.4 Flexibly, efficiently, and accurately prove theorems
line parallel to one side of a triangle divides the other two	about triangles: proportionality, triangle similarity, and the
proportionally, and conversely; the Pythagorean Theorem	Pythagorean Theorem.
proved using triangle similarity.	

WA State K–12 Learning Standards for Mathematics (2011)	WA State K-12 Learning Standards for Mathematics (2024)
G.SRT.B.5 Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.	G.SRT.B.5 Flexibly, efficiently, and accurately use congruence and similarity criteria for triangles to solve problems and to
solve problems and to prove relationships in geometric figures.	prove relationships in geometric figures.
G.SRT.C.6 Understand that by similarity, side ratios in right	G.SRT.C.6 Understand that by similarity, side ratios in right
triangles are properties of the angles in the triangle, leading to	triangles are properties of the angles in the triangle, leading to
definitions of trigonometric ratios for acute angles.	definitions of trigonometric ratios for acute angles.
G.SRT.C.7 Explain and use the relationship between the sine	G.SRT.C.7 Explain and use the relationship between the sine
and cosine of complementary angles.	and cosine of complementary angles.
G.SRT.C.8 Use trigonometric ratios and the Pythagorean	G.SRT.C.8 Use trigonometric ratios and the Pythagorean
Theorem to solve right triangles in applied problems.	Theorem to solve right triangles in applied problems.
G.C.A.1 Prove that all circles are similar.	G.C.A.1 Flexibly, efficiently, and accurately prove that all circles
	are similar.
G.C.A.2 Identify and describe relationships among inscribed	G.C.A.2 Identify and describe relationships among inscribed
angles, radii, and chords. Include the relationship between	angles, radii, and chords, including how angles formed inside
central, inscribed, and circumscribed angles; inscribed angles on	the circle, the circle's radius, and line segments within the circle
a diameter are right angles; the radius of a circle is	are related. Understand special cases including angles formed
perpendicular to the tangent where the radius intersects the circle.	by diameters and how the circle's edge interacts with its radius.
G.C.A.3 Construct the inscribed and circumscribed circles of a	G.C.A.3 Construct the inscribed and circumscribed circles of a
triangle, and prove properties of angles for a quadrilateral	triangle and flexibly, efficiently, and accurately prove properties
inscribed in a circle.	of angles for a quadrilateral inscribed in a circle.
G.C.B.5 Derive using similarity the fact that the length of the arc	G.C.B.5 Derive using similarity the fact that the length of the arc
intercepted by an angle is proportional to the radius, and define	intercepted by an angle is proportional to the radius, and define
the radian measure of the angle as the constant of	the radian measure of the angle as the constant of
proportionality; derive the formula for the area of a sector.	proportionality; derive the formula for the area of a sector.
G.GPE.A.1 Derive the equation of a circle of given center and	G.GPE.A.1 Derive the equation of a circle of given center and
radius using the Pythagorean Theorem; complete the square to	radius using the Pythagorean Theorem.
find the center and radius of a circle given by an equation.	

WA State K-12 Learning Standards for Mathematics (2011)	WA State K–12 Learning Standards for Mathematics (2024)
G.GPE.A.2 Derive the equation of a parabola given a focus and	G.GPE.A.2 Derive the equation of a parabola given a focus and
directrix.	directrix.
G.GPE.B.4 Use coordinates to prove simple geometric theorems	G.GPE.B.4 Use coordinates to prove simple geometric theorems
algebraically. For example, prove or disprove that a figure	algebraically.
defined by four given points in the coordinate plane is a	
rectangle; prove or disprove that the point (1, $\sqrt{3}$) lies on the	
circle centered at the origin and containing the point (0, 2).	
G.GPE.B.5 Prove the slope criteria for parallel and perpendicular	G.GPE.B.5 Prove the slope criteria for parallel and perpendicular
lines and use them to solve geometric problems (e.g., find the	lines and use them to solve geometric problems (e.g., find the
equation of a line parallel or perpendicular to a given line that	equation of a line parallel or perpendicular to a given line that
passes through a given point).	passes through a given point).
G.GPE.B.6 Find the point on a directed line segment between	G.GPE.B.6 Find the point on a directed line segment between
two given points that partitions the segment in a given ratio.	two given points that partitions the segment in a given ratio.
G.GPE.B.7 Use coordinates to compute perimeters of polygons	G.GPE.B.7 Use coordinates to compute perimeters of polygons
and areas of triangles and rectangles, e.g., using the distance	and areas of triangles and rectangles, e.g., using the distance
formula.	formula.
G.GMD.A.1 Give an informal argument for the formulas for the	G.GMD.A.1 Give an informal argument for the formulas for the
circumference of a circle, area of a circle, volume of a cylinder,	circumference of a circle, area of a circle, volume of a cylinder,
pyramid, and cone. Use dissection arguments, Cavalieri's	pyramid, and cone.
principle, and informal limit arguments.	
G.GMD.A.3 Use volume formulas for cylinders, pyramids, cones,	G.GMD.A.3 Use volume formulas for cylinders, pyramids, cones,
and spheres to solve problems.	and spheres to solve problems.
G.GMD.B.4 Identify the shapes of two-dimensional cross-	G.GMD.B.4 Identify the shapes of two-dimensional cross-
sections of three-dimensional objects, and identify three-	sections of three-dimensional objects, and identify three-
dimensional objects generated by rotations of two-dimensional	dimensional objects generated by rotations of two-dimensional
objects.	objects.

WA State K–12 Learning Standards for Mathematics (2011)	WA State K–12 Learning Standards for Mathematics (2024)
G.MG.A.1 Use geometric shapes, their measures, and their	G.MG.A.1 Use geometric shapes, their measures, and their
properties to describe objects (e.g., modeling a tree trunk or a	properties to describe objects (e.g., modeling a tree trunk or a
human torso as a cylinder).	human torso as a cylinder).
G.MG.A.2 Apply concepts of density based on area and volume	G.MG.A.2 Apply concepts of density based on area and volume
in modeling situations (e.g., persons per square mile, BTUs per	in modeling situations (e.g., persons per square mile, BTUs per
cubic foot).	cubic foot).
G.MG.A.3 Apply geometric methods to solve design problems	G.MG.A.3 Apply geometric methods to solve design problems
(e.g., designing an object or structure to satisfy physical	(e.g., designing an object or structure to satisfy physical
constraints or minimize cost; working with typographic grid	constraints or minimize cost; working with typographic grid
systems based on ratios).	systems based on ratios).

Statistics and Probability

WA State K-12 Learning Standards for Mathematics (2011)	WA State K-12 Learning Standards for Mathematics (2024)
S.ID.A.1 Represent data with plots on the real number line (dot	S.ID.A.1 Represent data with plots on the real number line (dot
plots, histograms, and box plots).	plots, histograms, and box plots).
S.ID.A.2 Use statistics appropriate to the shape of the data	S.ID.A.2 Use statistics appropriate to the shape of the data
distribution to compare center (median, mean) and spread	distribution to compare center (median, mean) and spread
(interquartile range, standard deviation) of two or more different	(interquartile range, standard deviation) of two or more different
data sets.	data sets.
S.ID.A.3 Interpret differences in shape, center, and spread in the	S.ID.A.3 Interpret differences in shape, center, and spread in the
context of the data sets, accounting for possible effects of	context of the data sets, accounting for possible effects of
extreme data points (outliers).	extreme data points (outliers).
S.ID.A.4 Use the mean and standard deviation of a data set to	S.ID.A.4 Use the mean and standard deviation of a data set to
fit it to a normal distribution and to estimate population	fit it to a normal distribution and to estimate population
percentages. Recognize that there are data sets for which such a	percentages. Recognize that there are data sets for which such a
procedure is not appropriate. Use calculators, spreadsheets, and	procedure is not appropriate. Use calculators, spreadsheets, and
tables to estimate areas under the normal curve.	tables to estimate areas under the normal curve.
S.ID.B.5 Summarize categorical data for two categories in two-	S.ID.B.5 Summarize categorical data for two categories in two-
way frequency tables. Interpret relative frequencies in the	way frequency tables. Interpret relative frequencies in the
context of the data (including joint, marginal, and conditional	context of the data (including joint, marginal, and conditional
relative frequencies). Recognize possible associations and trends	relative frequencies). Recognize possible associations and trends
in the data.	in the data.

WA State K-12 Learning Standards for Mathematics (2011)	WA State K-12 Learning Standards for Mathematics (2024)
S.ID.B.6 Represent data on two quantitative variables on a	S.ID.B.6 a), b), c) Represent data on two quantitative variables
scatter plot, and describe how the variables are related.	on a scatter plot and describe how the variables are related to
a) Fit a function to the data; use functions fitted to data to solve	solve problems in context by fitting functions to the data and
problems in the context of the data. Use given functions or	explaining trends and relationships within the data.
choose a function suggested by the context. Emphasize linear,	
quadratic, and exponential models.	
b) Informally assess the fit of a function by plotting and	
analyzing residuals.	
c) Fit a linear function for a scatter plot that suggests a linear	
association.	
S.ID.C.7 Interpret the slope (rate of change) and the intercept	S.ID.C.7 Interpret the slope (rate of change) and the intercept
(constant term) of a linear model in the context of the data.	(constant term) of a linear model in the context of the data.
S.ID.C.8 Compute (using technology) and interpret the	S.ID.C.8 Compute (using technology) and interpret the
correlation coefficient of a linear fit.	correlation coefficient of a linear fit.
S.ID.C.9 Distinguish between correlation and causation.	S.ID.C.9 Distinguish between correlation and causation.
S.IC.A.1 Understand statistics as a process for making	S.IC.A.1 Understand statistics as a process for making
inferences about population parameters based on a random	inferences about population parameters based on a random
sample from that population.	sample from that population.
S.IC.A.2 Decide if a specified model is consistent with results	S.IC.A.2 Decide if a specified model is consistent with results
from a given data-generating process, e.g., using simulation. For	from a given data-generating process, e.g., using simulation.
example, a model says a spinning coin falls heads up with	
probability 0.5. Would a result of 5 tails in a row cause you to	
question the model?	
S.IC.B.3 Recognize the purposes of and differences among	S.IC.B.3 Recognize the purposes of and differences among
sample surveys, experiments, and observational studies; explain	sample surveys, experiments, and observational studies; explain
how randomization relates to each.	how randomization relates to each.

WA State K-12 Learning Standards for Mathematics (2011)	WA State K-12 Learning Standards for Mathematics (2024)
S.IC.B.4 Use data from a sample survey to estimate a population	S.IC.B.4 Use data from a sample survey to estimate a population
mean or proportion; develop a margin of error through the use	mean or proportion; develop a margin of error through the use
of simulation models for random sampling.	of simulation models for random sampling.
S.IC.B.5 Use data from a randomized experiment to compare	S.IC.B.5 Use data from a randomized experiment to compare
two treatments; use simulations to decide if differences between	two treatments; use simulations to decide if differences between
parameters are significant.	parameters are significant.
S.IC.B.6 Evaluate reports based on data.	S.IC.B.6 Evaluate reports based on data.
S.CP.A.1 Describe events as subsets of a sample space (the set	S.CPA.A.1 Describe events as subsets of a sample space (the set
of outcomes) using characteristics (or categories) of the	of outcomes) using characteristics (or categories) of the
outcomes, or as unions, intersections, or complements of other	outcomes, or as unions, intersections, or complements of other
events ("or," "and," "not").	events ("or," "and," "not").
S.CP.A.2 Understand that two events A and B are independent	S.CPA.2 Understand that two events A and B are independent if
if the probability of A and B occurring together is the product of	the probability of A and B occurring together is the product of
their probabilities, and use this characterization to determine if	their probabilities, and use this characterization to determine if
they are independent.	they are independent.
S.CP.A.3 Understand the conditional probability of A given B as	S.CPA.3 Understand the conditional probability of A given B as
P(A and B)/P(B), and interpret independence of A and B as	P(A and B), P(B) and interpret independence of A and B as
saying that the conditional probability of A given B is the same	saying that the conditional probability of A given B is the same
as the probability of A, and the conditional probability of B	as the probability of A, and the conditional probability of B
given A is the same as the probability of B.	given A is the same as the probability of B.

WA State K-12 Learning Standards for Mathematics (2011)	WA State K–12 Learning Standards for Mathematics (2024)
S.CP.A.4 Construct and interpret two-way frequency tables of	S.CP.A.4 Construct and interpret two-way frequency tables of
data when two categories are associated with each object being	data when two categories are associated with each object being
classified. Use the two-way table as a sample space to decide if	classified. Use the two-way table as a sample space to decide if
events are independent and to approximate conditional	events are independent and to approximate conditional
probabilities. For example, collect data from a random sample of	probabilities.
students in your school on their favorite subject among math,	
science, and English. Estimate the probability that a randomly	
selected student from your school will favor science given that	
the student is in tenth grade. Do the same for other subjects	
and compare the results.	
S.CP.A.5 Recognize and explain the concepts of conditional	S.CP.A.5 Recognize and explain the concepts of conditional
probability and independence in everyday language and	probability and independence in everyday language and
everyday situations. For example, compare the chance of having	everyday situations.
lung cancer if you are a smoker with the chance of being a	
smoker if you have lung cancer.	
S.CP.B.6 Find the conditional probability of A given B as the	S.CP.B.6 Find the conditional probability of A given B as the
fraction of B's outcomes that also belong to A, and interpret the	fraction of B's outcomes that also belong to A, and interpret the
answer in terms of the model.	answer in terms of the model.
S.CP.B.7 Apply the Addition Rule, $P(A \text{ or } B) = P(A) + P(B) - P(A)$	S.CP.B.7 Apply the Addition Rule,
and B), and interpret the answer in terms of the model.	P(A or B) = P(A) + P(B) - P(A and B), and interpret the answer in
	terms of the model.

Data Science

WA State K-12 Learning Standards for Mathematics (2011)	WA State K-12 Learning Standards for Mathematics (2024)
Addition of Data Science Standards	HS.DS.1 Formulate multivariable statistical investigative
	questions and determine how data can be collected and provide
	an answer, consider causality and prediction when posing the
	question.
Addition of Data Science Standards	HS.DS.2 Understand the issues of bias and confounding
	variables when collecting data and their impact on
	interpretation. Understand practices for collecting and handling
	data, including sensitive information and concerns for privacy
	and how that may affect data collection.
Addition of Data Science Standards	HS.DS.3 Create and analyze data sets and data displays,
	including but not limited to scatter plots, regressions,
	histograms, and boxplots using technology to sort or filter data,
	summarize, and describe relationships between quantitative
	variables.
Addition of Data Science Standards	HS.DS.4 Acknowledge the presence of missing data values and
	understand how missing values may add bias to analysis and
	interpretation. Examine and discuss competing explanations for
	data trends observed such as confounding variables. Respond to
	competing arguments or interpretations of the data of different
	community groups, paying careful attention to what conclusions
	the data supports, taking into account correlation versus
	causation.