A Component of the Washington State Assessment System

Science, Math, 太 **Educational Technology** Speed Racer **Practice Papers** Grades 4-5 Assessment

Office of Superintendent of Public Instruction June 2011

Grades 4 – 5 Speed Racer Science, Math, and Educational Technology Assessment

Introduction

This Practice Set provides educators with student exemplars for the grades 4-5 Speed Racer Educational Technology assessment. We selected each sample to model the range of scoring for this assessment. There are two components that make up the scoring guide for educational technology — **Attributes of Educational Technology Standards (checklist)** and the **Scoring Rubric for Educational Technology**.

Attributes of Educational Technology Standards. Teachers will use the *attributes* checklist first to determine the number of **attribute points** the student work can earn. The checklist presents a list of characteristics that should be present in student work which meets the standard. The **GLE**s targeted by the assessment are listed in the left column.

Each **attribute name**, such as *Generate Questions*, is derived directly from the standards (*Build background knowledge and generate questions by viewing multimedia*.). Each attribute has one or more **descriptions** which detail what an at-standard performance looks like (*Develops original questions after viewing multimedia*.).

This is different from a typical rubric, which describes various levels of performance. With the checklist, the teacher has only to decide whether or not the work is at standard. If the teacher determines that the work is at standard, then it earns the number of points indicated in the right-hand column. The teacher totals the points.

Scoring Rubric for Educational Technology. In the final step, the teacher uses the **total number of points** earned in the *attributes* checklist to determine the overall level of performance for the assessment. Student work earning no more than five attribute points would represent a below standard (Level 1) performance. Six to seven points meets the standard (Level 2), while student work that earns eight or nine points exceeds the standard (Level 3).

Discussion

We understand that this type of scoring may be new for many teachers; however, there are several compelling reasons why the assessment development group selected this tool over a traditional rubric.

First, many of the educational technology standards represent skills. As such, a student can demonstrate the skill or they cannot—there is no "better or worse than." It did not make sense to scale the point scoring for the attributes, and the assessment development group decided not to quantify performance in terms of the number of times a student could demonstrate the skill. This is also why there are three performance levels instead of four.

A checklist format that describes the *attributes* is an efficient tool for teachers. There is only one decision involved for each attribute—is the work at standard?—instead of several decisions about quality. The tool also allows for cleaner scoring as the teacher need only consider **one attribute at a time**. This is unlike many rubrics, which have multiple attributes within a single cell. A student's work might reach various targets within a column or row, so the teacher must synthesize the score. With the *attributes* checklist and *scoring rubric* tool we provide for the educational technology standards, teachers will be able score consistently across student work.

Review the Scoring Guide carefully (next two pages) and then the exemplars. Score each sample before using the annotations to review your choices and options for student feedback.

Grades 4 – 5 Speed Racer Science, Math, and Educational Technology Assessment

Directions: Each of the *attribute names* below represents part of an educational technology standard. These are followed by *descriptions* of student performance which meet the standard. If the student work provides evidence of meeting the standard, it earns the *points* shown in the final column. Total the points and then compare to the *Scoring Rubric* to determine the overall level of performance.

We use the term *digital* to refer to tools and information that do not exist in a physical form. Computer software, Web sites, online databases, pod/vodcasts and pages from an eReader are just a few examples.

OL E	Attributes of Educational Technology Standards					
GLE	Attribute Name	Description	Points			
	Research Process (separate from multimedia product)					
1.3.1	Generate	Develops original questions after viewing multimedia	1			
	Questions	(for example an online simulation or video clip).	1			
	Plan Projects	Uses a digital tool to plan an investigation related	1			
	I fall I fojeets	directly to the student task.	1			
	Collect and	Collects data related directly to the student task.	1			
	Graph Data	Graphs data using a digital tool.	1			
1.1.2		Uses an interactive resource (online simulation or				
1.1.2	Recognize Patterns	graphing tool) to identify a pattern or trend.	1			
		For example, "The graph shows that as the weight of a ball				
		increases, so does its speed down the ramp."				
		Multimedia Product	-			
		Creates a digital product to communicate information.	1			
	Produce	Combines audio, text, graphs, video, symbols, or				
	Multimedia	pictures that are related directly to the student task into	1			
		product.				
1.1.1	Organize Ideas	Uses information gathered during the investigation to	1			
1.1.1		explain how the rules will make the race fair.	1			
		Uses features (font, color, transitions) of the digital tool				
		to effectively communicate main ideas to the audience.	1			
		For example, different font sizes are used consistently to	1			
		show headers and subjects or transitions to reveal answers.				
TOTA			9			

Attributes of Educational Technology Standards

Grades 4 – 5 Speed Racer Science, Math, and Educational Technology Assessment

Scoring Rubric for Educational Technology				
Performance Description	Points			
A Level 3 response exceeds the standards and reflects that a student can demonstrate knowledge and ability beyond the requirements for Educational Technology GLEs 1.1.1, 1.1.2, and 1.3.1.	8 - 9			
A Level 2 response meets the standards and reflects that a student understands and is able to perform GLE 1.1.1 <i>Demonstrate creative thinking, construct knowledge and develop innovative products and processes using technology,</i> 1.1.2 <i>Use models and simulations to explore systems, identify trends and forecast possibilities</i> and GLE 1.3.1 <i>Identify and define authentic problems and significant questions for investigation and plan strategies to guide inquiry</i> BY using digital tools to explore the relationship between time, distance, weight and speed in order to develop a set of rules for a toy car race.	6 - 7			
A Level 1 response reflects that a student is still working toward meeting GLEs 1.1.1, 1.1.2 and 1.3.1.	0 - 5			

Scoring Rubric for Educational Technology

Lab: Speed Racer

You have been asked to judge a toy car race. Last year, some cars were so much faster than others that it was believed some racers might have cheated. The organizers want the race to be fair. They would like you to write a set of at least four rules for the event to ensure no car can cheat to win. The rules must be based on evidence about how weight, time, and distance affect the speed of an object rolling down a ramp.

2017011

To develop the rules, you will need to plan and conduct an investigation, collect and interpret data, and explain how your rules will make the race fair. Use digital tools to organize your information and communicate your results to the Racing Committee. Speed is determined by the distance traveled divided by the time traveled (for example, mph in a car).

Luger Race Observation Data: Choose earth and two other space objects. Collect data for three trials of each.

1/2 time	Total time
37.4	55,5
36,6	54.8
36.6	54.8
369-	55.3
1/2 time	Total time
871.	11.5
8.1	11,5
8.1	11.5
8.	11.5
1/2 time	Total time
2418	Blid
2412	3612
24.8	36.3
74.3	-1109.7
e less arav	ity the clause
Methics	, the obwer
. winning goes	
. Mining goes	
. winning yoes	
. coming yoes	
	36.6

SPEEDRACER

Ρ1

P1

Reseach/Purpose Question: How does the weight of a round object affect the speed of a round object?

Background information (based on the Intergalactic Luge activity and previously learned information)

What did you notice about the relationship between the weight of the luger and his/her speed down the track?

onticed MARP MIRICA ne faster Newton's First Law of Motion: In Motion Somet nina Newton's Second Law of Motion: CC b Hypothesis (predict the answer to your research question): I predict pr.1 WI OnVI Materials: pS MA Procedure: What are the steps to test your research question?

Data Collection

The Distance an Object Travels in 3 Seconds

Type of Object (Manipulated Variable:	D Distance in centimeters (Responding Variable: place on Y axis)					
place on X axis)	Trial #1	Trial #2	Trial #3	Average Distance (mean)	Average Speed (distance divided by time)	
Round candy (lightest/lowest weight)	116 cm	133	100	Vidante	24.53	
Small marble (middle weight)	193	140	209	182	60.6	
Large marble (heaviest/most weight)	207	163	205	207	55.5	

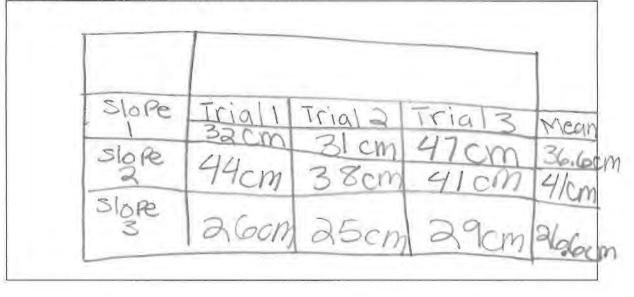
5

Graph. Make a line graph of your data, using centimeter graph paper. **Online graph.** Graph your information, using the graphing tool at http://nces.ed.gov/nceskids/createagraph.

Print out a copy and include it with this lab sheet. Also, save the graph in your file.

Conclusion: What does your table and graph show? How does the weight of the round object affect the speed of the round object? Answer your research question, using data from your table and graph.

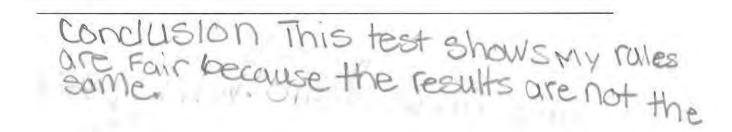
the lighter ah SOWS ILA OS 55.51 WEP ms the Small You have been asked to judge a toy car race. Last year, some cars were so much faster than others that it Was correct was believed some racers might have cheated. The organizers want the race to be fair. They would like you to write a set of at least four rules for the event to ensure no car can cheat to win. The rules must be based on evidence about how weight, time, and distance affect the speed of an object rolling down a ramp. To develop the rules, you will need to plan and conduct an investigation, collect and interpret data, and explain how your rules will make the race fair. Use digital tools to organize your information and communicate your results to the Racing Committee. Speed is determined by dividing the distance traveled by the time traveled (for example, mph in a car). Rule #2: Rule #1: Reason for the rule (based on evidence Reason for the rule (based on evidence collected in Speed Racer lab or online collected in Speed Racer lab or online activities) activities) Rule #4: Rule #3: Reason for the rule (based on evidence Reason for the rule (based on evidence collected in Speed Racer lab or online collected in Speed Racer lab or online activities) activities)

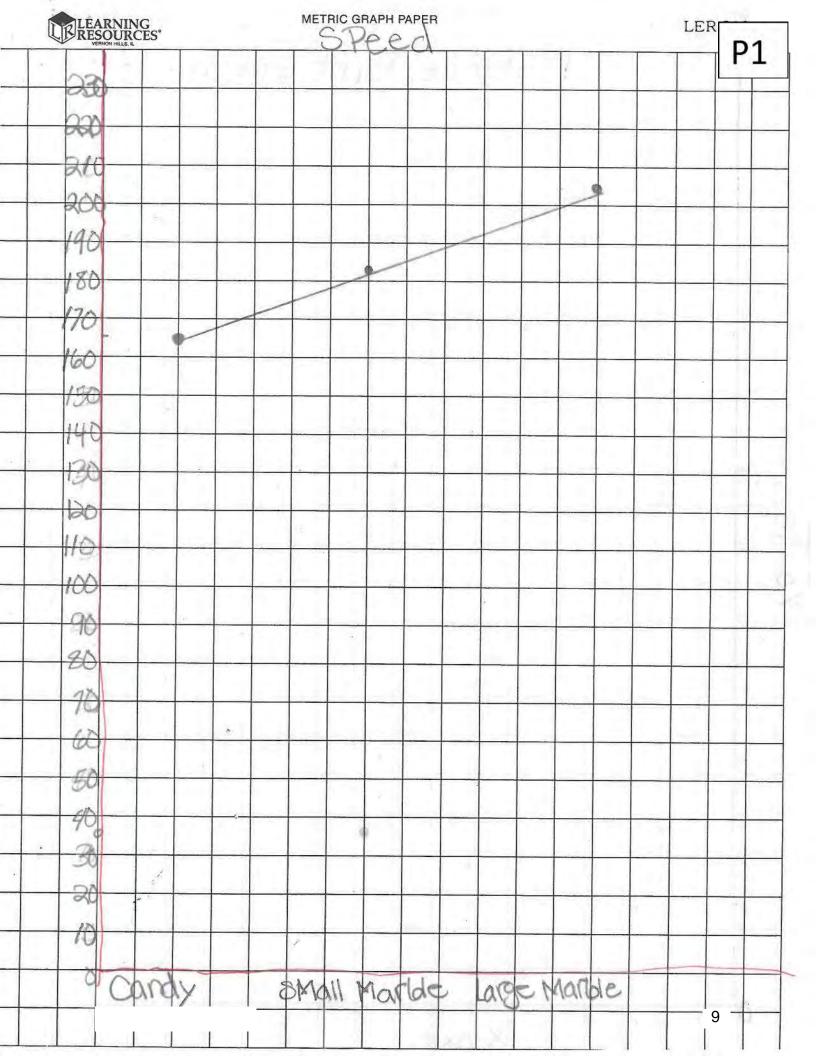

7

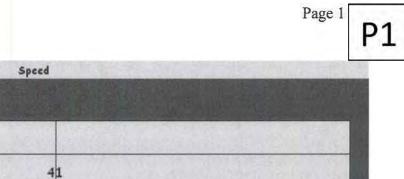
Plan a project and test your solution (your rules). Create a model using the following materials.

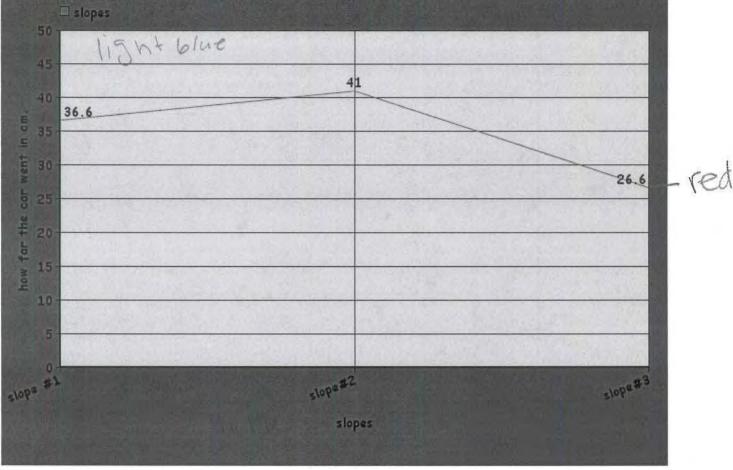
Materials: a toy car, tape, pennies to change the weight, ramp.

Project plan. How will you test your rules, using a model? pec SAVA


The data collected to prove my rules are fair:


Presentation:

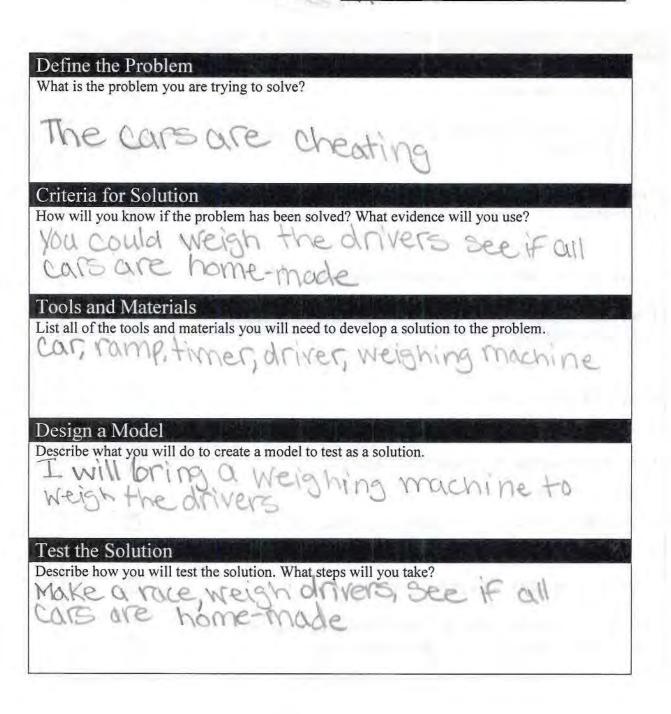

Use prezi.com to make an online presentation of your solution to the problem. Your primary title should be "SPEED RACER." Include your rules, the reason your rules are fair, the plan you made to test your rules and the graph that you made from the Speed Racer lab. Also include science concepts that connect to your plan. If you use pictures or information from online or somewhere else, be sure to include the source that your pictures or information came from.


Reference notes: (name of web site or book, URL if online, author, date used)

LEARNING RESOURCES	Distance	LER 312
VERMON HILLS, IL	T PLOYMET TIT	P1
1.43		
100		
90		
80		
70		
60		
50		
40		
20		
30		
20		
10		
ODANDY	Small maride Large M	nariele
		8

Porple

6 ý


•

P1 Speed Racer Rules Zo Wes Mondas 2 No engines because racers 3. NO Weights 4. No electricity 5 no boosts only our wheels no remote controls I no extra weight. cars will go factor 2 all racers must be the same weight 11

Ρ1

Speed Racer Project Plan Grades 4 – 5 Science, Math, and Educational Technology CBA

Name____

Jelly Bean

Speed Racer Project Plan Grades 4 – 5 Science, Math, and Educational Technology CBA

121991 Results meac What are the results of your test? Use a combination of words, tables, graphs, or pictures to show the data and observations. cat ligher vamp goes faster See gragh Modify the Design What could you do to modify the design and improve the results? reight or material or car Communicate the Solution List the rules you developed for the toy car race. Be sure to include evidence that shows how weight, time, and distance affect the speed of an object rolling down a ramp. All ramps must be the same. No extra weight All cars must be home made Drivers must be same weight

Ρ1

Rule 61 no extra weight ears with more weight go faster

Procedures#1-8

31 gather materials 32 mate a ramp 33 send each ear down the ramp 34 measure distance 35 record data in data table 35 ropeat steps 31-5 37 flud mean 33 compare results

> Last year the town had a par rase some cars want faster than others so we need to make the race fair by making rules

rula 34 all cars must be home made some store cars have motors

Rule #2 all slopes must be the same if the ramps are different one car will finish first Rile d'à resers must be the same weight heavyer driver heavyer ear

> When I tested Rule #1 I found that this rule is fair slope #1 was 35.6 cm slope #2 was 41 cm slope #3 was 25.6 cm so slope #2 would reach first and slope #3 would be last

Speed Racer

a race is having cheaters so we have to find rules to get rid of cheaters

.

Lab: Speed Racer

You have been asked to judge a toy car race. Last year, some cars were so much faster than others that it was believed some racers might have cheated. The organizers want the race to be fair. They would like you to write a set of at least four rules for the event to ensure no car can cheat to win. The rules must be based on evidence about how weight, time, and distance affect the speed of an object rolling down a ramp.

To develop the rules, you will need to plan and conduct an investigation, collect and interpret data, and explain how your rules will make the race fair. Use digital tools to organize your information and communicate your results to the Racing Committee. Speed is determined by the distance traveled divided by the time traveled (for example, mph in a car).

Gravity(Earth)	1/2 time	Total time
1.0 (Earth)		
Trial #1	36.8 Sec	5409 see
Trial #2	3701sec	56.3500
Trial #3	3707Sec	55.9
Average (mean)	3708 Dec	55,366 sec
Gravity (Jupiter)2!	529 1/2 time	Total time
Frial #1	24.9 sec	36.33ec
Frial #2	14.9 Sec	B6.4 Sec
Frial #3	24.8 sec	24.8000 36.35ec
Average (mean)	24.7 sec 74.65	er 36-2500 109 500
Gravity (Sun) 280	05 1/2 time	Total time
Trial #1	8.0 260	11.5 Sec
Trial #2	800 Sec	11.5 see
Trial #3	J. O Sec	11.5sec
verage (mean)	24580	3405500
hat do you notice?	wow have the ha	ter the sled goes
ner ici ze gi aviti	g que neve incrat	pice the stee goes

Luger Race Observation Data: Choose earth and two other space objects. Collect data for three trials of each.

Reseach/Purpose Question: How does the weight of a round object affect the speed of a round object?

Background information (based on the Intergalactic Luge activity and previously learned information)

What did you notice about the relationship between the weight of the luger and his/her speed down the track?

speca administration.
The more weight / gravity por pull there was
the faster the "round object" went down
the macko
Newton's First Law of Motion: an abject in motion or at rest
stays there unless acted yoon by another faire
Newton's Second Law of Motion: Force always Changes with
mass and the speed of acceleration
Hypothesis (predict the answer to your research question): I predict
that the heavier the round object is there faster
the round object will go.
Materials: I meterstick, 3 diff. size marbles, math/090K, timing, clock
Procedure: What are the steps to test your research question?
1) Cather materials/make course
2) set nound abjects) at the top top the ramp
31 release roud objects) at the same time
4) collect data and white down in Nata table
5) repeat steps two through this about 2 to 4 hines
61 Find sverages and compare

Data Collection

The Distance an Object Travels in 3 Seconds

Type of Object (Manipulated Variable:	D Distance in centimeters (Responding Variable: place on Y axis) Vertical					
place on X axis) hofizontal	Trial #1	Trial #2	Trial #3	Average Distance (mean)	Average Speed (distance divided by time)	
Round candy (lightest/lowest weight)	38cm	43cm	49cm	413.3cm	14:43-55	
Small marble middle weight)	51cm	53m	6000	54 . Gom	18.2cps	
Large marble heaviest/most weight)	7800	7500	79cm	773	25.7Eq	

Graph. Make a line graph of your data, using centimeter graph paper. **Online graph.** Graph your information, using the graphing tool at http://nces.ed.gov/nceskids/createagraph.

fount drabu

Print out a copy and include it with this lab sheet. Also, save the graph in your file.

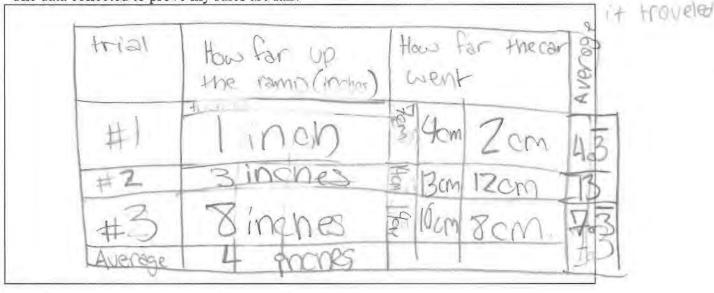
Conclusion: What does your table and graph show? How does the weight of the round object affect the speed of the round object? Answer your research question, using data from your table and graph.

My prediction was connel	of because the average
of distanciality 773 wh	ich was the most out of
for the braest spiert	433.645 010 77.5

You have been asked to judge a toy car race. Last year, some cars were so much faster than others that it was believed some racers might have cheated. The organizers want the race to be fair. They would like you to write a set of at least four rules for the event to ensure no car can cheat to win. The rules must be based on evidence about how weight, time, and distance affect the speed of an object rolling down a ramp. To develop the rules, you will need to plan and conduct an investigation, collect and interpret data, and explain how your rules will make the race fair. Use digital tools to organize your information and communicate your results to the Racing Committee.

Speed is determined by dividing the distance traveled by the time traveled (for example, mph in a car).

Rule #1: Rule #2: Reason for the rule (based on evidence Reason for the rule (based on evidence collected in Speed Racer lab or online collected in Speed Racer lab or online activities) activities) Rule #3: Rule #4: Reason for the rule (based on evidence Reason for the rule (based on evidence collected in Speed Racer lab or online collected in Speed Racer lab or online activities) activities) 12

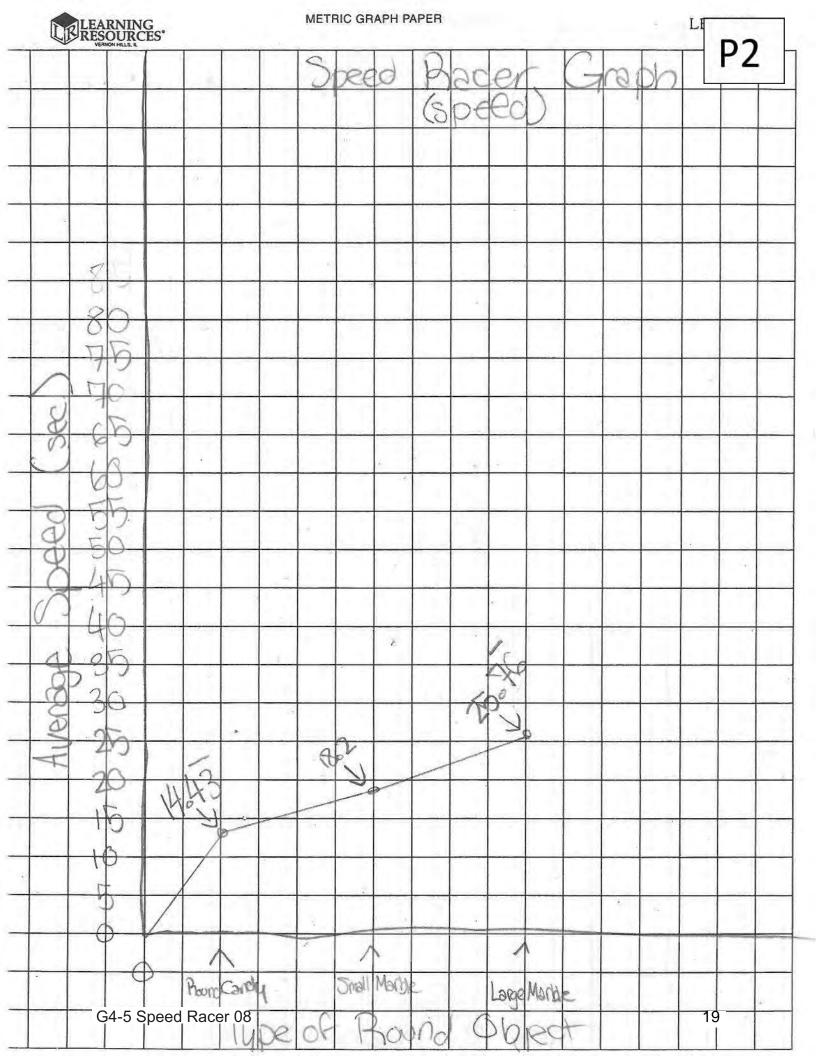

Conky graj

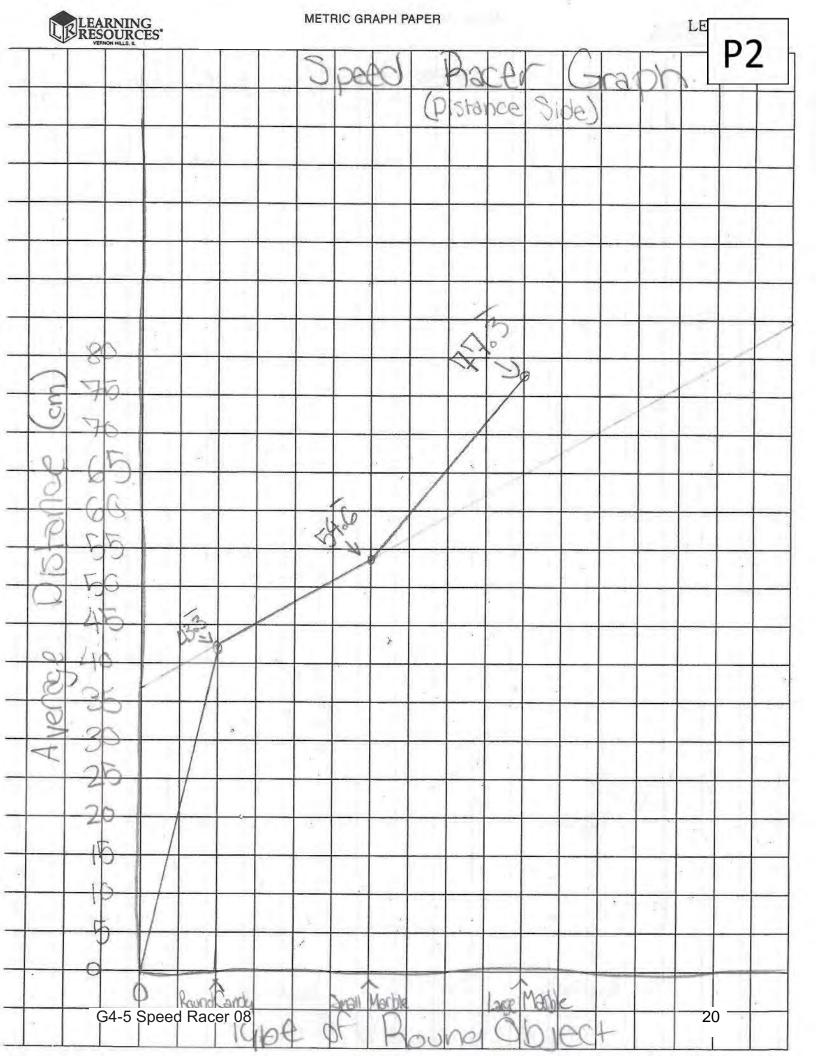
Plan a project and test your solution (your rules). Create a model using the following materials.

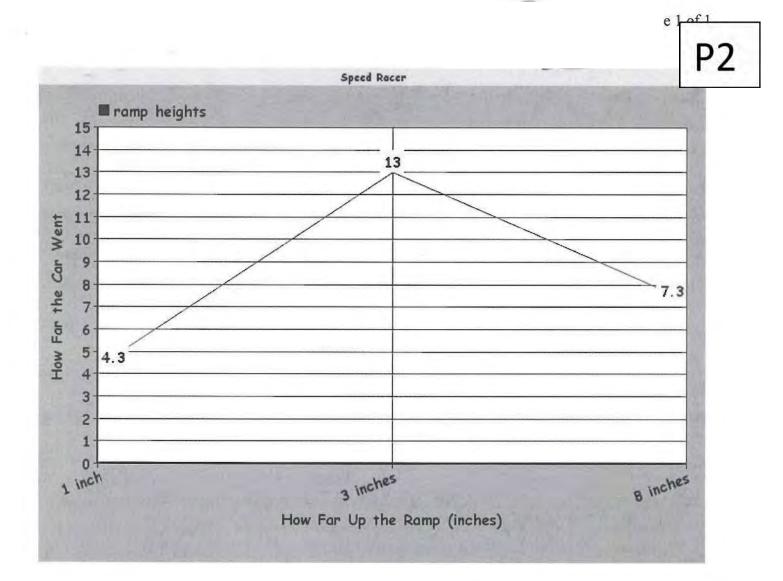
Materials: a toy car, tape, pennies to change the weight, ramp. Project plan. How will you test your rules, using a model?

Research Question How Obes releasing the cars at different neights
up the ramp effect the speed and distance
that the cars co? Receives Destroy malorials 2) Set up 5) 3At car at
different, place on ramp 4) release (5) stop car where ever
It is at 4'sec. 6) record gatal it rebeat sets 2-6 about site
The data collected to prove my rules are fair. On distance within 4 sec that

on distance with The data collected to prove my rules are fair:

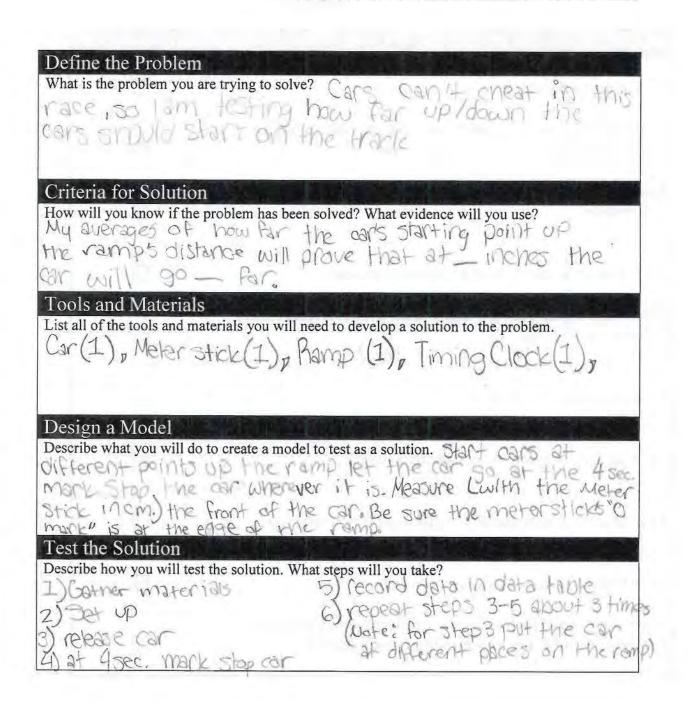


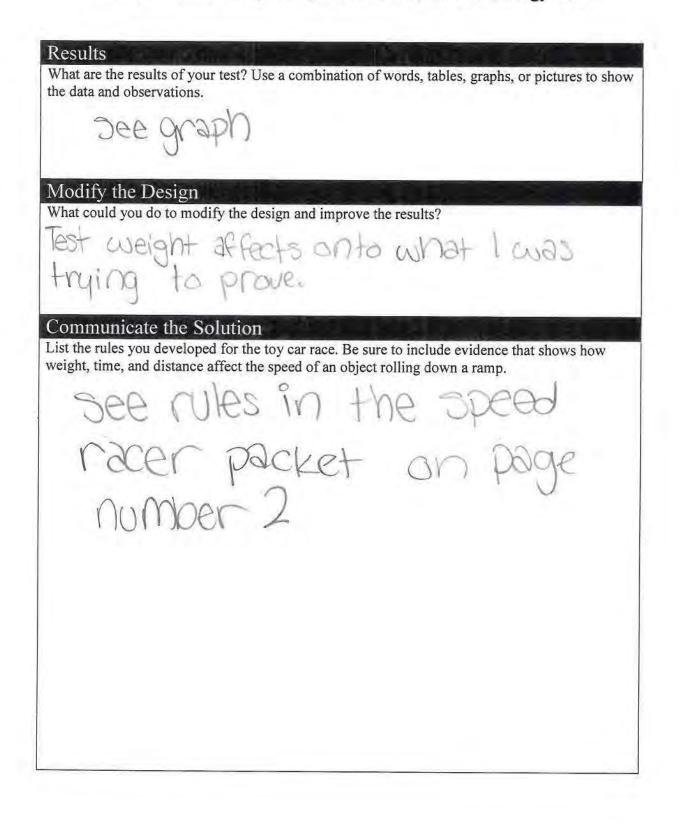

Presentation:


Use prezi.com to make an online presentation of your solution to the problem. Your primary title should be "SPEED RACER." Include your rules, the reason your rules are fair, the plan you made to test your rules and the graph that you made from the Speed Racer lab. Also include science concepts that connect to your plan. If you use pictures or information from online or somewhere else, be sure to include the source that your pictures or information came from.

Reference notes: (name of web site or book, URL if online, author, date used)

Conclusion. This test shows are fair because if one of at the top and one starts for the middle one chill go for 18




P2

Speed Racer Project Plan Grades 4 – 5 Science, Math, and Educational Technology CBA


Name

Speed Racer Project Plan Grades 4 – 5 Science, Math, and Educational Technology CBA

Rule#2: Start each car at the same distance up the track

Please visit http://www.k12.wa.us/EdTech/ Assessment/VideoPracticeIndex.aspx#P2 to see the multimedia product for Sample P2.

Lab: Speed Racer

You have been asked to judge a toy car race. Last year, some cars were so much faster than others that it was believed some racers might have cheated. The organizers want the race to be fair. They would like you to write a set of at least four rules for the event to ensure no car can cheat to win. The rules must be based on evidence about how weight, time, and distance affect the speed of an object rolling down a ramp.

To develop the rules, you will need to plan and conduct an investigation, collect and interpret data, and explain how your rules will make the race fair. Use digital tools to organize your information and communicate your results to the Racing Committee. Speed is determined by the distance traveled divided by the time traveled (for example, mph in a car).

Gravity(Earth)	1/2 time	Total time
1.0 (Earth) Trial #1	3618	55:0
Trial #2	37.0	55.1
Trial #3	37,1	55.3
Average (mean)	3619	5511
Gravity Suppler 2,529	1/2 time	Total time
Trial #1	25.0	36.5
Trial #2	24,9	-Z6.4
Trial #3	2419	36.9
Average (mean)	Zura	76.4
Gravity SUN 28:05	1/2 time	Total time
Trial #1	810	11,5
Trial #2	810	1115
Trial #3	8:0	115
Average (mean) What do you notice?	G. no	1115 hade
That to you notice:	Planc.	
7.1.0.1.0.1.1.0.1	+IE WITH	+ n+ smallesty
FINCA CU	nount of	a cality when
the dal	nollin	2. martin humb
INC DIED	40+all+	- PI

Luger Race Observation Data: Choose earth and two other space objects. Collect data for three trials of each.

Reseach/Purpose Question: How does the weight of a round object affect the speed of a round object?

Background information (based on the Intergalactic Luge activity and previously learned information)

What did you notice about the relationship between the weight of the luger and his/her speed down the track?

Nel Methind. t ans Wha-Newton's First Law of Motion: 늰 n Keydie CLIC Newton's Second Law of Motion: 6 14 n Hypothesis (predict the answer to your research question): I predict 0 1 01 Materials: Procedure: What are the steps to test your research question? (Gather Material ensdre 1-10 VR \leq n

Data Collection

The Distance an Object Travels in 3 Seconds

Type of Object (Manipulated Variable:	D Distance in centimeters (Responding Variable: place on Y axis)						
place on X axis)	Trial #1	Trial #2	Trial #3	Average Distance (mean)	Average Speed (distance divided by time)		
Round candy (lightest/lowest weight)	38cm	41cm	STCM	45,3m	15, Cher ISi Sec		
Small marble (middle weight)	59cm	62cm	87 cm	69.3cm	23:1		
Large marble (heaviest/most weight)	98cm	5Ocm	140	84.3	Z81		

26

87

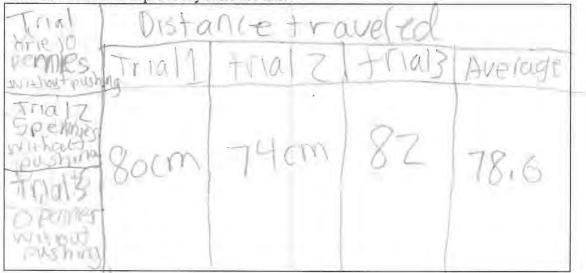
P3

Graph. Make a line graph of your data, using centimeter graph paper. **Online graph.** Graph your information, using the graphing tool at http://nces.ed.gov/nceskids/createagraph.

Print out a copy and include it with this lab sheet. Also, save the graph in your file.

Conclusion: What does your table and graph show? How does the weight of the round object affect the speed of the round object? Answer your research question, using data from your table and graph.

y table RIQ ava 5 0 You have been asked to judge a toy car race. Last year, some cars were so much faster than others that it was believed some racers might have cheated. The organizers want the race to be fair. They would like you to write a set of at least four rules for the event to ensure no car can cheat to win. The rules must be based on evidence about how weight, time, and distance affect the speed of an object rolling down a ramp. To develop the rules, you will need to plan and conduct an investigation, collect and interpret data, and explain how your rules will make the race fair. Use digital tools to organize your information and communicate your results to the Racing Committee. Speed is determined by dividing the distance traveled by the time traveled (for example, mph in a car). Rule #1: Rule #2: Reason for the rule (based on evidence Reason for the rule (based on evidence collected in Speed Racer lab or online collected in Speed Racer lab or online activities) activities) EOVI O1 Rule #4: Rule #3: Reason for the rule (based on evidence Reason for the rule (based on evidence collected in Speed Racer lab or online collected in Speed Racer lab or online activities) activities) C

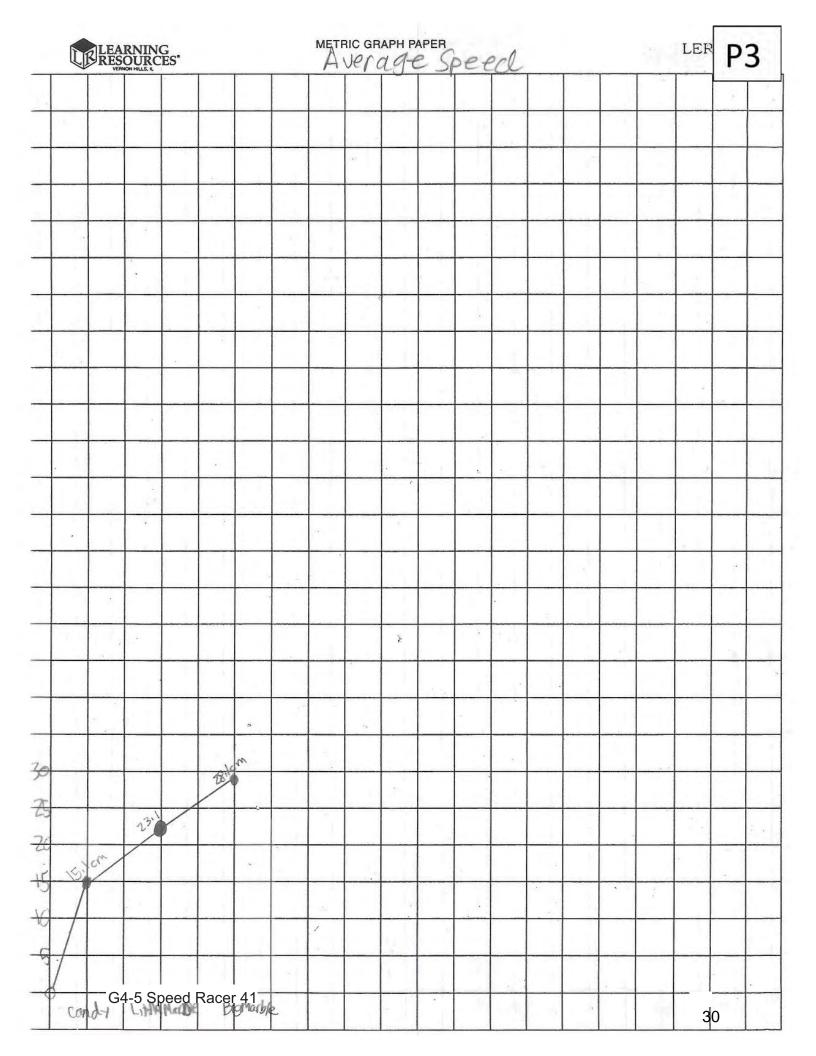

P3

Plan a project and test your solution (your rules). Create a model using the following materials.

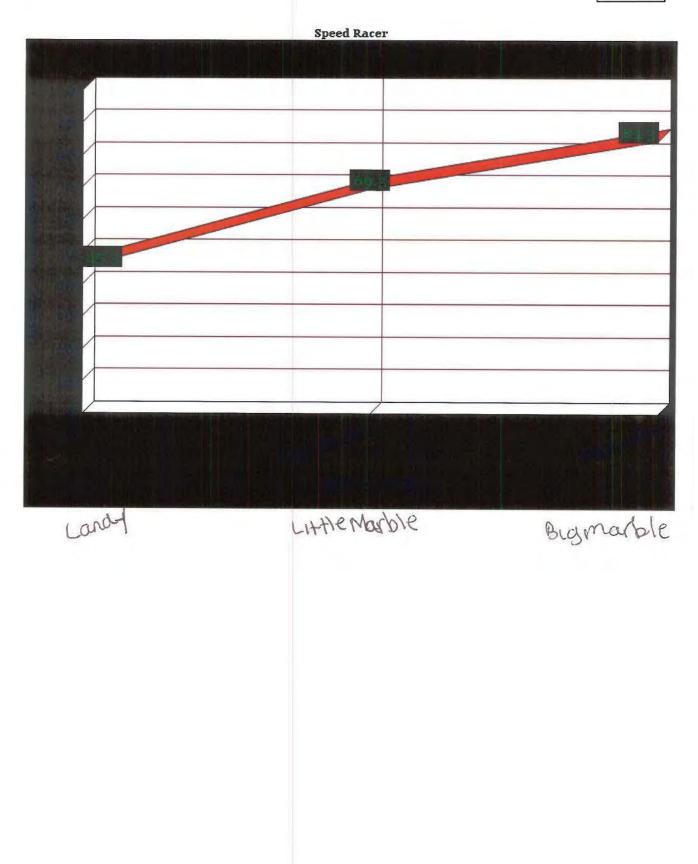
Materials: a toy car, tape, pennies to change the weight, ramp. **Project plan** How will you test your rules using a model?

I WALL	+ CJ+ M	1 601	7510	sina	a 1	nodel	03	<u> </u>
adding	1 ALLEY	ent	WITT	11+5	an	d not	DUST	MOR
10000	19 C	Sec. del	1	in s	Ger 1		1	

The data collected to prove my rules are fair:



Presentation:


Use prezi.com to make an online presentation of your solution to the problem. Your primary title should be "SPEED RACER." Include your rules, the reason your rules are fair, the plan you made to test your rules and the graph that you made from the Speed Racer lab. Also include science concepts that connect to your plan. If you use pictures or information from online or somewhere else, be sure to include the source that your pictures or information came from.

Reference notes: (name of web site or book, URL if online, author, date used)

	RES		G ES*			4	The T	rag	RAPH P C D	ISF.	anc	e	<u></u>	1			LER	P3
			1					1									1-1	
	_					-										1		
			-				-	-					-		-			-
				-											-			
	-				50						-							
	-		-							-				-				
							um											
						6	1											
				-	1	1	-									1		
					/					<u> </u>								
			0	R.						-								
		1	Poli			1.2			*									
			1/				-	-			-							
			1														-	
		/											-					3
	. /	1				-		-						1				
0	50/						-	-					-					
45.	1						1		F									
		(P																
	-									-								
	10				a		-										-	
	-	-					122											
1									-									
+	-					-												
					-					-								
								- 1										
								er é		3						н		
		0		-			1						-					
					_													
	H	1 5 0		Race	or 11								-					

P3


Speed Racer Project Plan Grades 4 – 5 Science, Math, and Educational Technology CBA

Name Define the Problem What is the problem you are trying to solve? \neg erace fair. 1010 aker Criteria for Solution How will you know if the problem has been solved? What evidence will you use? **Tools and Materials** List all of the tools and materials you will need to develop a solution to the problem. oy car, ramp, meter stick, Design a Model Describe what you will do to create a model to test as a solution. Test the Solution Describe how you will test the solution. What steps will you take?

P3

Speed Racer Project Plan Grades 4 – 5 Science, Math, and Educational Technology CBA

Results What are the results of your test? Use a combination of words, tables, graphs, or pictures to show the data and observations. The results are cm and T Modify the Design What could you do to modify the design and improve the results? hedesign & modif TI_{λ} Communicate the Solution List the rules you developed for the toy car race. Be sure to include evidence that shows how weight, time, and distance affect the speed of an object rolling down a ramp.

Lab: Speed Racer

You have been asked to judge a toy car race. Last year, some cars were so much faster than others that it was believed some racers might have cheated. The organizers want the race to be fair. They would like you to write a set of at least four rules for the event to ensure no car can cheat to win. The rules must be based on evidence about how weight, time, and distance affect the speed of an object rolling down a ramp.

To develop the rules, you will need to plan and conduct an investigation, collect and interpret data, and explain how your rules will make the race fair. Use digital tools to organize your information and communicate your results to the Racing Committee. Speed is determined by the distance traveled divided by the time traveled (for example, mph in a car).

Gravity(Earth)	1/2 time	Total time				
1.0 (Earth) Trial #1	36.8	55.0				
Trial #2	37.0	55,1				
Trial #3	37.1	55.3				
Average (mean)		55.0				
Gravity Sun 26.05	1/2 time	Total time				
Trial #1	8.0	1.5				
Trial #2	8.0	1.5				
Trial #3	8.0	11.5				
Average (mean)		11.5				
Gravity Plut-02.069	1/2 time	Total time				
Frial #1	91.7	153.2				
Trial #2	99.1	156.3				
Trial #3	94,0	156.2				

Luger Race Observation Data: Choose earth and two other space objects. Collect data for three trials of each.

I noticed hat the bigger the Safter the sled will go.

Reseach/Purpose Question: How does the weight of a round object affect the speed of a round object?

Background information (based on the Intergalactic Luge activity and previously learned information)

What did you notice about the relationship between the weight of the luger and his/her speed down the track?

I noticed that if the planet has more gravity it makes the luger more heavy and that increase his ther Speedand the opposite theory for smaller planets pluto.

Newton's First Law of Motion: Things we to keep doing

Newton's Second Law of Motion: force arts smaller arbigger

Hypothesis (predict the answer to your research question): I predict <u>I product that the bigger the round object a heliaster the smaller</u> one will ap and the proste of the for small cound objects.

Materials: "meterstick 30 fferentsize marbles mouth book clock

Procedure: What are the steps to test your research question?

elaa -ex ON ALEE 100 . O. 1/2 W 0 11/10 averga Speeds. 00 211 +40 02 ma \tilde{r}_{λ}

Data Collection

The Distance an Object Travels in 3 Seconds

Type of Object (Manipulated Variable:	D Distance in centimeters (Responding Variable: place on Y axis)										
place on X axis)	Trial #1	Trial #2	Trial #3	Average Distance (mean)	Average Speed (distance divided by time)						
Round candy (lightest/lowest weight)	33cm	39cm	4/cm	37.6	12.53 CMP3						
Small marble (middle weight)	54cm	Gacm	Sucr	56	18.6 cmps						
Large marble (heaviest/most weight)	79cm	99cm	locm	93	31 cmps						

Graph. Make a line graph of your data, using centimeter graph paper. **Online graph.** Graph your information, using the graphing tool at http://nces.ed.gov/nceskids/createagraph.

Print out a copy and include it with this lab sheet. Also, save the graph in your file.

Conclusion: What does your table and graph show? How does the weight of the round object affect the speed of the round object? Answer your research question, using data from your table and graph.

My hypothesis was right the bigger heavier and ject is the fasteritages and approvise that principal for small objects.

You have been asked to judge a toy car race. Last year, some cars were so much faster than others that it was believed some racers might have cheated. The organizers want the race to be fair. They would like you to write a set of at least four rules for the event to ensure no car can cheat to win. The rules must be based on evidence about how weight, time, and distance affect the speed of an object rolling down a ramp. To develop the rules, you will need to plan and conduct an investigation, collect and interpret data, and explain how your rules will make the race fair. Use digital tools to organize your information and communicate your results to the Racing Committee.

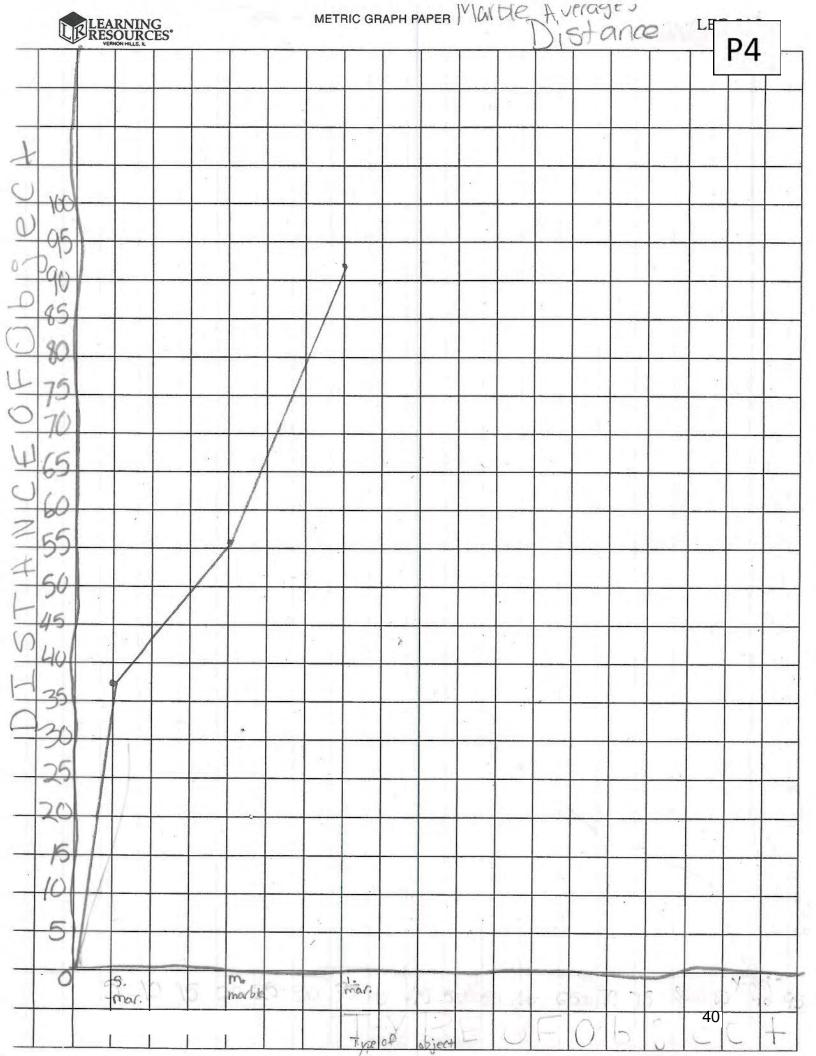
Speed is determined by dividing the distance traveled by the time traveled (for example, mph in a car).

yangthing but glaving.
ason for the rule (based on evidence lected in Speed Racer lab or online ivities)
e #4:
a Chance +0

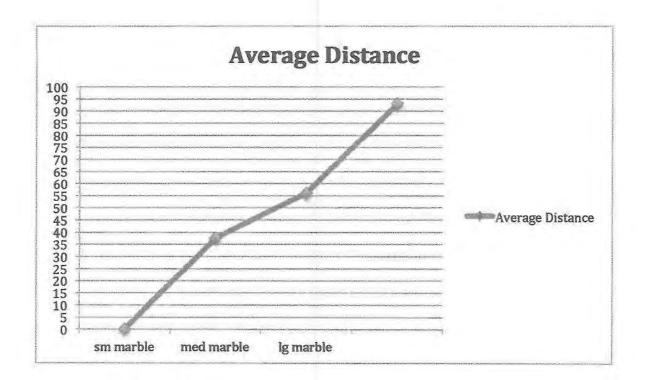
graphaveran

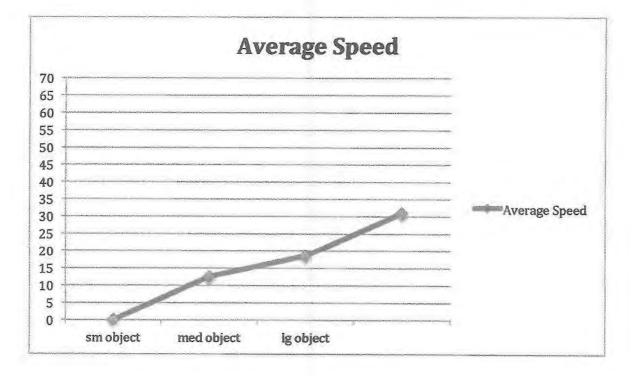
Plan a project and test your solution (your rules). Create a model using the following materials.

Materials: a toy car, tape, pennies to change the weight, ramp. **Project plan**. How will you test your rules, using a model?

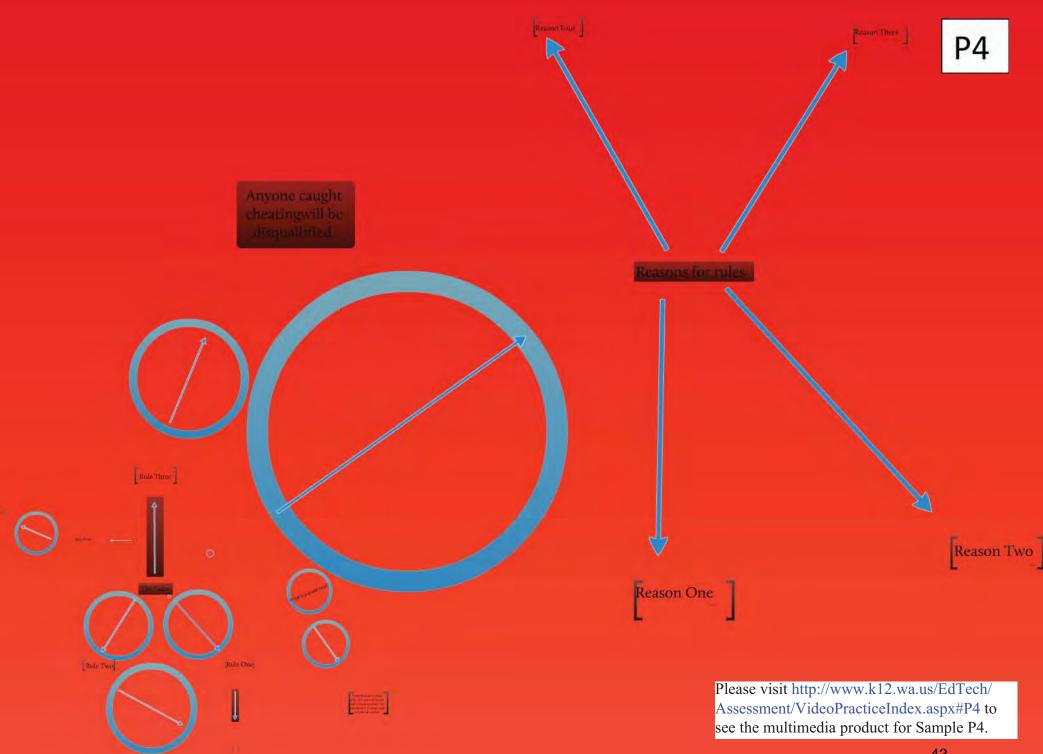

The data collected to prove my rules are fair:

Presentation:


Use prezi.com to make an online presentation of your solution to the problem. Your primary title should be "SPEED RACER." Include your rules, the reason your rules are fair, the plan you made to test your rules and the graph that you made from the Speed Racer lab. Also include science concepts that connect to your plan. If you use pictures or information from online or somewhere else, be sure to include the source that your pictures or information came from.


Reference notes: (name of web site or book, URL if online, author, date used)

	BRE		G ES*		1	1				PAPER		-	T		1	-	LER	P	4
-	-			-	-			-						-	-	-			-
-	-	-		-		<u> </u>	-	-				-	-	-	-				
	1																		
				4	-											18			
	1																		
	1	1							4							-			
						-	-	+		-		-	-		-				-
-	-	-		-		-	-	-		-			-					-	-
1	-	-	-	-	-		-			-			-						-
10																-			
66						1			÷	6									
6				1.1					1										
69		,					ε		20										
00										1			1		-			+	
30	1	1	-					-		-									1
45	-		(2)		-	-			ž		-	-					-		
40		-					- 6.											_	
35								<u> </u>		1. A.			-						
30				-				-			-								
35					-						-								
22																			
12050			1 al.	1	1		1910												
121		1	-															-11	-
10		-				-							-			12.1			-
5	1	2)					1	-				-						-	-
	4																		_
0		3.6.			m.			06.							8				
4			0.231		n et			Gard	of	objects				+			39	a	



P4 rule#1: no motor powered cars rule # 2° carmust notice powered by anything ... rule#3: anyone caught cheating will be disqualified rule#48 no ruining anyone else's cars reason#187horing no one 'salway the winner (Pason#2:50 no one is the absolute fastest reason #38 That way there will be nocheoters. (Pason # 48 That way weall have a fair change to win.

42

Lab: Speed Racer

You have been asked to judge a toy car race. Last year, some cars were so much faster than others that it was believed some racers might have cheated. The organizers want the race to be fair. They would like you to write a set of at least four rules for the event to ensure no car can cheat to win. The rules must be based on evidence about how weight, time, and distance affect the speed of an object rolling down a ramp.

To develop the rules, you will need to plan and conduct an investigation, collect and interpret data, and explain how your rules will make the race fair. Use digital tools to organize your information and communicate your results to the Racing Committee. Speed is determined by the distance traveled divided by the time traveled (for example, mph in a car).

Luger Race Observation Data: Choose earth and two other space objects. Collect data for three trials of each.

Gravity(Earth)	1/2 time	Total time
1.0 (Earth) Trial #1	1172	55.5
Trial #2	36.6	54.8
Trial #3	36,0	54/8
Average (mean)	36.9	56
Gravity (5.11) 19.05	1/2 time	Total time
Trial #1	1.1	11.5
Trial #2	GI	11,5
Trial #3	Ful	3. <i>11</i>
Average (mean)	8.1	12
Gravity (Pluda) a HA	1/2 time	Total time
Trial #1	\$1.5	14 1.8
Trial #2	91.9	153.3
Trial #3	88.	H8.8
Average (mean)	4.0	150
Average (mean)	49	gravity the Fas

44

P5

Reseach/Purpose Question: How does the weight of a round object affect the speed of a round object?

Background information (based on the Intergalactic Luge activity and previously learned information)

What did you notice about the relationship between the weight of the luger and his/her speed down the track?

The heavier it it faster they go

Newton's First Law of Motion: A Hora Law Stress In 1910

Newton's Second Law of Motion:

Hypothesis (predict the answer to your research question): I predict $+h_{0}$

Materials: Metter tick, 3 marth 10, Mulh book Surnal, tiner

Procedure: What are the steps to test your research question?

· STOVI Juned up o A Pach	Hal and	record	641	GI
3 Aprar stapp Zicirminti	1 Olohe	with	all	your
data autor i chart	Asalte			3
AT FIND ON TRACT DW PRATE	1 624113			

Data Collection

The Distance an Object Travels in 3 Seconds

Type of Object (Manipulated Variable:	D Distance in centimeters (Responding Variable: place on Y axis)							
place on X axis)	Trial #1	Trial #2	Trial #3	Average Distance (mean)	Average Speed (distance divided by time)			
Round candy (lightest/lowest weight)	Som	430	HBern	47.3	15,8			
Small marble (middle weight)	TOW	630	66	66.3	22.1			
Large marble (heaviest/most weight)	8700	84200	79.10	\$3.3	27.8			

٨

Graph. Make a line graph of your data, using centimeter graph paper. **Online graph.** Graph your information, using the graphing tool at http://nces.ed.gov/nceskids/createagraph.

Print out a copy and include it with this lab sheet. Also, save the graph in your file.

Conclusion: What does your table and graph show? How does the weight of the round object affect the speed of the round object? Answer your research question, using data from your table and graph.

The	uie.	ght.	64	the	Setec	1 does	affec	f it	- because it
its he	avier.	1.4	Will	90	faster	because	e the	Sha	11 canal got
AN 0.10	90 100	6 peal	15,9	15	mall h	mibles a	Warah	22.1	tha lotad marth

You have been asked to judge a toy car race. Last year, some cars were so much faster than others that it was believed some racers might have cheated. The organizers want the race to be fair. They would like you to write a set of at least four rules for the event to ensure no car can cheat to win. The rules must be based on evidence about how weight, time, and distance affect the speed of an object rolling down a ramp. To develop the rules, you will need to plan and conduct an investigation, collect and interpret data, and explain how your rules will make the race fair. Use digital tools to organize your information and communicate your results to the Racing Committee.

autrage of 27.8.50 61640 Dh m Into. Mj hyphin as Grace,

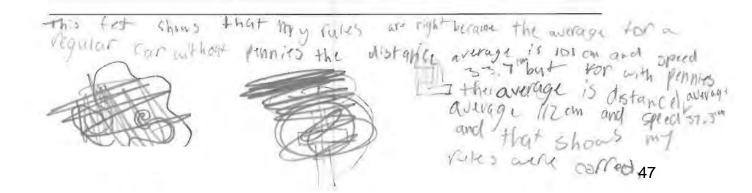
Speed is determined by dividing the distance traveled by the time traveled (for example, mph in a car).

Rule #1:	Rule #2:
Each car has to work the name	You Can not modify your
Reason for the rule (based on evidence collected in Speed Racer lab or online activities) <u>bicompleter and base on</u> <u>with a diaman</u>	Reason for the rule (based on evidence collected in Speed Racer lab or online activities) BLCOWSE Upon call add MPLE d Remarks control car part to Make it parter
Rule #3: Has to be a home-made with wood give etc. and no Syore bought	Rule #4: The judge has to inspect
Reason for the rule (based on evidence	Reason for the rule (based on evidence
collected in Speed Racer lab or online	collected in Speed Racer lab or online
activities)	activities)
Because type cant	Because so you can't
just go to the store	do full #1 have it heaver
and begin to because to	full #2 no wird fications
cant be or permote control	rule #3 it muy be stirl
can so it open a lat but	bught.

Plan a project and test your solution (your rules). Create a model using the following materials.

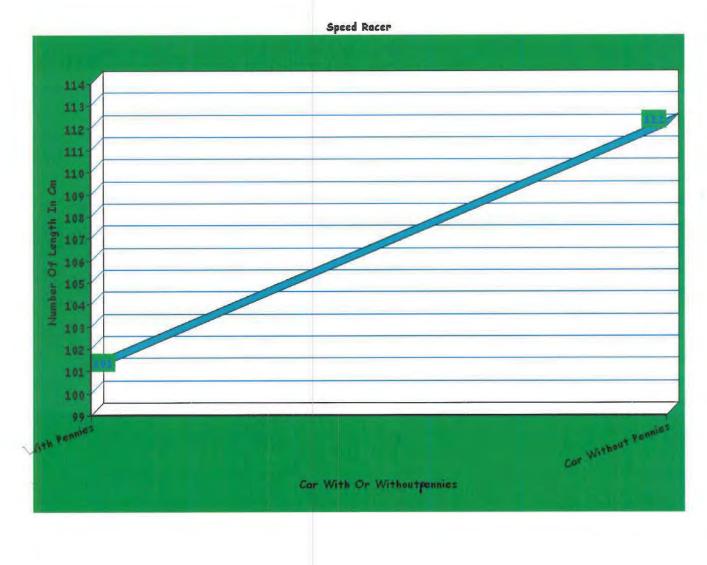
Materials: a toy car, tape, pennies to change the weight, ramp. **Project plan**. How will you test, your rules, using a model?

distance if one car is heavier than another.


1			~ `	Old coll						
Proceder	Wathir	materials	2)50	up r	Ump O	re	lease	ah.d		
collect	Hata O.	Coeat sti	03	until	dara	15	COPTI	plefe		
3 Shart	result-	x 1		1			1-			

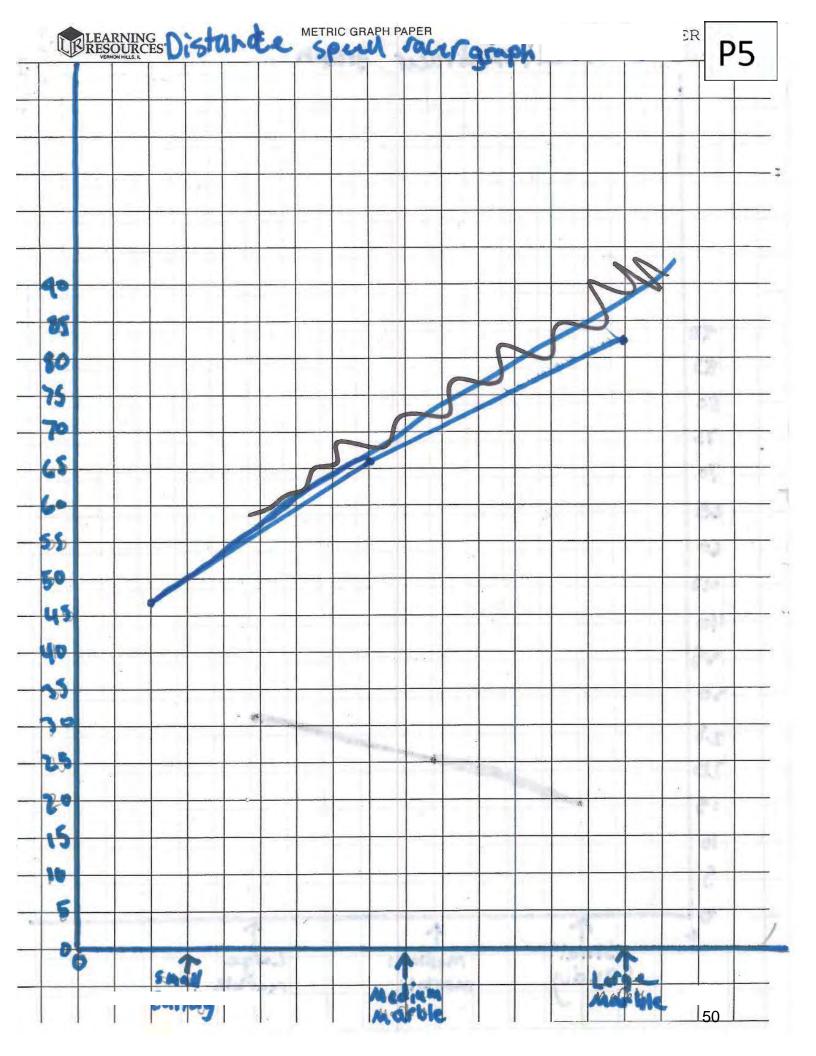
The data collected to prove my rules are fair: Type trial #1 +rial #2 +rial #3 Average speed Workennies 100 cm 76 cm 127 cm 101 337 W/ Pennies 107 cm 107 cm 127 cm 112 373

Presentation:


Use prezi.com to make an online presentation of your solution to the problem. Your primary title should be "SPEED RACER." Include your rules, the reason your rules are fair, the plan you made to test your rules and the graph that you made from the Speed Racer lab. Also include science concepts that connect to your plan. If you use pictures or information from online or somewhere else, be sure to include the source that your pictures or information came from.

Reference notes: (name of web site or book, URL if online, author, date used)

Speed Racer Rules Each Car has to weigh the same 3) You can not modify you're car Has to be a home-made car I ton have to let the car be checked by the judges before you begin the race 48



- -

.

* ...

Speed Racer Project Plan Grades 4 – 5 Science, Math, and Educational Technology CBA

Name Define the Problem Last year people thought were chesting miles with What is the problem you are trying to solve? Criteria for Solution How will you know if the problem has been solved? What evidence will you use? That it looks fairs **Tools and Materials** List all of the tools and materials you will need to develop a solution to the problem. You can get a weight so you can weigh thecats to see if there cheating because its too heavy, Design a Model Describe what you will do to create a model to test as a solution. added pennies and the car wint faster when and heavier. Test the Solution I will such fyre add pennies and paper clips if it will go faster that acar Describe how you will test the solution. What steps will you take? without, anything,

Speed Racer Project Plan Grades 4 – 5 Science, Math, and Educational Technology CBA

Results What are the results of your test? Use a combination of words, tables, graphs, or pictures to show the data and observations. The one with pennies went had the one without that the one without Paster Modify the Design What could you do to modify the design and improve the results? more Propies. (P) Communicate the Solution List the rules you developed for the toy car race. Be sure to include evidence that shows how weight, time, and distance affect the speed of an object rolling down a ramp. 1 L6: Jp Fyou add More weight it will go Fester 2# No modifications: no remote control parts or something like that so of will go rester. 3" Can't be storebought has to be made or wood, glue, take, & naits etc. It Judges have to sheck your carigo you don't do any or inves 1,2,3.

Speed Racer

Procedures

My Embasilli

i. Each Gar Has To Walgh The Same manufacture

Number and an an and an anternal ages

You can not modify or upgrade your car.

and the

8. has to be a home-mails car with the materials of wood, give nois, screws, and 2 d^{*} metal sticks.

> Second you want just go to the stars and buy a toy can become it may weigh rears and thats mights.

st. The hulps have be inspired your star-

My rules are fair because if there wasn't my rules people could cheat.

#1. Gather materials

- #2. Make ramp
- #3. Start and record data for each
- #4. Repeat steps #3 until data is complete
- #5. Find averages and share results

Please visit http://www.k12.wa.us/EdTech/ Assessment/VideoPracticeIndex.aspx#P5 to see the multimedia product for Sample P5.